Shelf-life evaluation and lyophilization of PBCA-based polymeric microbubbles

Tarun Ojha, Vertika Pathak, Natascha Drude, Marek Weiler, Dirk Rommel, Stephan Rütten, Bertram Geinitz, Mies J. Van Steenbergen, Gert Storm, Fabian Kiessling, Twan Lammers*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

15 Citations (Scopus)
88 Downloads (Pure)


Poly(n-butyl cyanoacrylate) microbubbles (PBCA-MB) are extensively employed for functional and molecular ultrasound (US) imaging, as well as for US-mediated drug delivery. To facilitate the use of PBCA-MB as a commercial platform for biomedical applications, it is important to systematically study and improve their stability and shelf-life. In this context, lyophilization (freeze drying) is widely used to increase shelf-life and promote product development. Here, we set out to analyze the stability of standard and rhodamine-B loaded PBCA-MB at three different temperatures (4 °C, 25 °C, and 37 °C), for a period of time of up to 20 weeks. In addition, using sucrose, glucose, polyvinylpyrrolidone (PVP), and polyethylene glycol (PEG) as cryoprotectants, we investigated if PBCA-MB can be lyophilized without affecting their size, concentration, US signal generation properties, and dye retention. Stability assessment showed that PBCA-MB remain largely intact for three and four weeks at 4 °C and 25 °C, respectively, while they disintegrate within one to two weeks at 37 °C, thereby compromising their acoustic properties. Lyophilization analyses demonstrated that PBCA-MB can be efficiently freeze-dried with 5% sucrose and 5% PVP, without changing their size, concentration, and US signal generation properties. Experiments involving rhodamine-B loaded MB indicated that significant dye leakage from the polymeric shell takes place within two to four weeks in case of non-lyophilized PBCA-MB. Lyophilization of rhodamine-loaded PBCA-MB with sucrose and PVP showed that the presence of the dye does not affect the efficiency of freeze-drying, and that the dye is efficiently retained upon MB lyophilization. These findings contribute to the development of PBCA-MB as pharmaceutical products for preclinical and clinical applications.

Original languageEnglish
Article number433
Issue number9
Publication statusPublished - Sept 2019


  • Drug retention
  • Lyophilization
  • Microbubbles
  • PBCA
  • Storage stability
  • Ultrasound


Dive into the research topics of 'Shelf-life evaluation and lyophilization of PBCA-based polymeric microbubbles'. Together they form a unique fingerprint.

Cite this