Silicon based light emitters utilizing radiation from dislocations; electric field induced shift of the dislocation-related luminescence

T. Arguirov, T. Mchedlidze, M. Kittler, M. Reiche, T. Wilhelm, T. Hoang, J. Holleman, Jurriaan Schmitz

    Research output: Contribution to journalArticleAcademicpeer-review

    2 Citations (Scopus)


    Dislocation rich regions can be controllably formed at a certain location inside a silicon wafer. We studied the light emission properties of such regions located in an electric field of a p–n junction under different excitation conditions. It was found that the luminescence spectra of the dislocations are significantly influenced by the presence of the junction. The dislocation-related luminescence peak position appears red-shifted due to the built-in electric field. A suppression of that field by photogeneration of carriers or by applying a forward bias voltage at the junction leads to a gradual decrease in the energy position of the peaks. The dependence of the peak position on the electric field was found to be a quadratic function, similar to that observed for semiconductor nanostructures. We show that the shift of the peak position is due to the Stark effect on dislocation-related excitonic states. The characteristic constant of the shift, obtained by fitting the data with the quadratic Stark effect equation, was 0.0186 meV/(kV/cm)2. The observed effect opens new possibilities for integration of a silicon based light emitter, combining the radiation from dislocations with a Stark effect based modulator.
    Original languageUndefined
    Article number10.1016/j.physe.2008.08.045
    Pages (from-to)907-911
    Number of pages5
    JournalPhysica E
    Issue number6
    Publication statusPublished - 2009


    • Stark effect
    • Light emitter
    • Dislocations
    • IR-62784
    • Silicon
    • METIS-263779
    • EWI-15224
    • SC-SBLE: Silicon-based Light Emitters

    Cite this