Silicon-Filled rectangular waveguides and frequency scanning antennas for mm-Wave integrated systems

Gennaro Gentile, Vladimir Jovanović, Marco J. Pelk, Lai Jiang, Ronald Dekker, P. De Graaf, Behzad Rejaei, Leo C.N. De Vreede, Lis K. Nanver, Marco Spirito

Research output: Contribution to journalArticleAcademicpeer-review

32 Citations (Scopus)

Abstract

We present a technology for the manufacturing of silicon- filled integrated waveguides enabling the realization of lowloss high-performance millimeter-wave passive components and high gain array antennas, thus facilitating the realization of highly integrated millimeter-wave systems. The proposed technology employs deep reactive-ion-etching (DRIE) techniques with aluminum metallization steps to integrate rectangular waveguides with high geometrical accuracy and continuousmetallic side walls. Measurement results of integrated rectangular waveguides are reported exhibiting losses of 0.15 dB/ at 105GHz.Moreover, ultra-wideband coplanar to waveguide transitions with 0.6 dB insertion loss at 105 GHz and return loss better than 15 dB from 80 to 110 GHz are described and characterized. The design, integration and measured performance of a frequency scanning slotted-waveguide array antenna is reported, achieving a measured beam steering capability of 82 within a band of 23 GHz and a half-power beam-width (HPBW) of 8.5 at 96 GHz. Finally, to showcase the capability of this technology to facilitate low-cost mm-wave system level integration, a frequency modulated continuous wave (FMCW) transmitreceive IC for imaging radar applications is flip-chip mounted directly on the integrated array and experimentally characterized.

Original languageEnglish
Article number6595616
Pages (from-to)5893-5901
Number of pages9
JournalIEEE transactions on antennas and propagation
Volume61
Issue number12
DOIs
Publication statusPublished - 1 Jan 2013
Externally publishedYes

Keywords

  • Flip-chip
  • Frequency scanning array
  • Integration
  • Mm-wave interconnect
  • Mm-wave system
  • Radar
  • Substrate integrated waveguide (SIW)
  • W-band
  • Waveguide

Fingerprint

Dive into the research topics of 'Silicon-Filled rectangular waveguides and frequency scanning antennas for mm-Wave integrated systems'. Together they form a unique fingerprint.

Cite this