Simultaneous Coherent and Displacement Compounding for 2D Noninvasive Carotid Strain Imaging: a Proof of Principle Study

Moein Mozaffarzadeh, Anne E.C.M. Saris, Jan Menssen, Chris L. De Korte

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Arteriosclerosis results from lipid buildup in artery walls, leading to plaque formation, and is a leading cause of death. Plaque rupture can cause blood clots that might lead to a stroke. Distinguishing plaque types is a challenge, but ultrasound (US) elastography can help by assessing plaque composition based on strain values. Since the artery has a circular structure, an accurate axial and lateral displacement strategy is needed to derive the radial and circumferential strains. A high-precision lateral displacement is challenging due to the lack of phase information in the lateral direction of the beamformed RF data. Previously, our group has developed a compounding technique in which the lateral displacement is estimated using triangulation of the axial displacement estimated from transmitting and beamforming US beams at ±20°. However, transmitting with a single plane wave will reduce signal-to-noise and contrast-to-noise ratio as well as lateral resolution. In this article, we combine our displacement compounding with coherent compounding. Instead of transmitting a single plane wave, multiple plane waves are transmitted at certain angles centered on the angle of the beamforming grids, and then, the backscattered wavefronts are beamformed and coherently compounded on the center of the transmit beams (-20°, +20°, and 0°). The numerical investigation using the GE9LD probe (f 0 = 5.32 MHz, pitch = 230 μ m, and width = 43.9 mm) led us to 19 plane waves spanning angles within -10° to 10° (with respect to center of the transmit beams), resulting in a total of 57 plane wave transmit (for three beamforming grids at 0° and ±20°). FIELD II simulations of a cylindrically shaped phantom (mimicking the carotid artery) at a signal-to-noise ratio (SNR) ≥ 20 dB show that the proposed method decreases the root-mean-square error (RMSE) of the lateral displacement and strain estimations by 40% and 45% compared to the previous method, respectively. The results of our experiments with a carotid artery phantom [made out of 10% polyvinyl alcohol (PVA)] show that the proposed method provides strain images with higher quality and more in agreement with the theory, with 26% lower standard deviation, especially at the peak systolic phase. The proposed method paves the path toward improved quality in vivo 2-D strain imaging using our displacement compounding technique and translating it to 3-D with a row-column array.

Original languageEnglish
Pages (from-to)897-909
Number of pages13
JournalIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Volume71
Issue number7
Early online date13 May 2024
DOIs
Publication statusPublished - Jul 2024

Keywords

  • n/a OA procedure
  • Carotid arteries
  • carotid artery
  • coherent compounding
  • displacement estimation
  • Estimation
  • Imaging
  • plane wave transmission
  • Radio frequency
  • Strain
  • Strain imaging
  • Ultrasonic imaging
  • Array signal processing

Fingerprint

Dive into the research topics of 'Simultaneous Coherent and Displacement Compounding for 2D Noninvasive Carotid Strain Imaging: a Proof of Principle Study'. Together they form a unique fingerprint.

Cite this