TY - UNPB
T1 - Single-Source Pulsed Laser Deposited Perovskite Solar Cells with > 19% Efficiency
AU - Soto Montero, Tatiana Del Socorro
AU - Solomon Sathiaraj, Junia Shelomi Solomon
AU - Kralj, Suzana
AU - M. Cunha, Daniel
AU - Morales Masis, Monica
AU - Soltanpoor, Wiria
PY - 2024/1/31
Y1 - 2024/1/31
N2 - Single-source vapor deposition of metal halide perovskites has, to date, remained challenging due to the dissimilar volatilities of the perovskite precursors, limiting the controlled transfer of multiple elements at once. This Chapter demonstrates that pulsed laser deposition (PLD) addresses the rate-control challenges of single-source evaporation, enabling solar cells with power conversion efficiencies (PCE) above 19%. For this, we combined dry mechanochemical synthesis and PLD to fabricate MA1-xFAxPbI3 and Cl-passivated MA1-xFAxPbI3 films from a single-source target. The films are grown onto hole-selective self-assembled monolayers (SAMs-2PACz), where first a thin PbI2-rich layer forms, leading to full perovskite conversion as confirmed by grazing-incidence wide-angle X-ray scattering. Onto the perovskite, an oleylammonium iodide (OAmI) post-treatment is then applied to passivate its top surface by forming a 2D perovskite film. This was followed via in-situ PL monitoring during the 2D application. Further, we found that when incorporating PbCl2 in the target and OAmI-based 2D passivation, a remarkable 19.7% PCE for p–i–n perovskite solar cells is achieved with enhanced device stability. These findings emphasize the importance of interface and passivation strategies to improve the performance of PSC-containing vapor-deposited absorbers. Further, these results represent one of the highest PCEs achieved within the state-of-the-art single-source vapor deposition methods, as far as our knowledge extends. Consequently, this study highlights the appeal of PLD to fully unlock the potential of single-source vapor-deposited perovskite towards low-cost and efficient photovoltaics.
AB - Single-source vapor deposition of metal halide perovskites has, to date, remained challenging due to the dissimilar volatilities of the perovskite precursors, limiting the controlled transfer of multiple elements at once. This Chapter demonstrates that pulsed laser deposition (PLD) addresses the rate-control challenges of single-source evaporation, enabling solar cells with power conversion efficiencies (PCE) above 19%. For this, we combined dry mechanochemical synthesis and PLD to fabricate MA1-xFAxPbI3 and Cl-passivated MA1-xFAxPbI3 films from a single-source target. The films are grown onto hole-selective self-assembled monolayers (SAMs-2PACz), where first a thin PbI2-rich layer forms, leading to full perovskite conversion as confirmed by grazing-incidence wide-angle X-ray scattering. Onto the perovskite, an oleylammonium iodide (OAmI) post-treatment is then applied to passivate its top surface by forming a 2D perovskite film. This was followed via in-situ PL monitoring during the 2D application. Further, we found that when incorporating PbCl2 in the target and OAmI-based 2D passivation, a remarkable 19.7% PCE for p–i–n perovskite solar cells is achieved with enhanced device stability. These findings emphasize the importance of interface and passivation strategies to improve the performance of PSC-containing vapor-deposited absorbers. Further, these results represent one of the highest PCEs achieved within the state-of-the-art single-source vapor deposition methods, as far as our knowledge extends. Consequently, this study highlights the appeal of PLD to fully unlock the potential of single-source vapor-deposited perovskite towards low-cost and efficient photovoltaics.
KW - Pulsed Laser Deposition (PLD)
KW - metal halide perovskites
KW - perovskite solar cells
KW - passivation strategies
KW - in-situ PL
KW - GIWAXS
KW - single-source in vacuum deposition
UR - https://www.researchsquare.com/article/rs-3671187/v1
U2 - 10.21203/rs.3.rs-3671187/v1
DO - 10.21203/rs.3.rs-3671187/v1
M3 - Preprint
SP - 1
EP - 20
BT - Single-Source Pulsed Laser Deposited Perovskite Solar Cells with > 19% Efficiency
ER -