TY - CHAP
T1 - SLIC superpixels for object delineation UAV data
AU - Crommelinck, S.C.
AU - Bennett, R.M.
AU - Gerke, M.
AU - Koeva, M.N.
AU - Yang, M.Y.
AU - Vosselman, G.
PY - 2017/9/7
Y1 - 2017/9/7
N2 - Unmanned aerial vehicles (UAV) are increasingly investigated with regard to their potential to create and update (cadastral) maps. UAVs provide a flexible and low-cost platform for high-resolution data, from which object outlines can be accurately delineated. This delineation could be automated with image analysis methods to improve existing mapping procedures that are cost, time and labor intensive and of little reproducibility. This study investigates a superpixel approach, namely simple linear iterative clustering (SLIC), in terms of its applicability to UAV data. The approach is investigated in terms of its applicability to high-resolution UAV orthoimages and in terms of its ability to delineate object outlines of roads and roofs. Results show that the approach is applicable to UAV orthoimages of 0.05 m GSD and extents of 100 million and 400 million pixels. Further, the approach delineates the objects with the high accuracy provided by the UAV orthoimages at completeness rates of up to 64%. The approach is not suitable as a standalone approach for object delineation. However, it shows high potential for a combination with further methods that delineate objects at higher correctness rates in exchange of a lower localization quality. This study provides a basis for future work that will focus on the incorporation of multiple methods for an interactive, comprehensive and accurate object delineation from UAV data. This aims to support numerous application fields such as topographic and cadastral mapping.
AB - Unmanned aerial vehicles (UAV) are increasingly investigated with regard to their potential to create and update (cadastral) maps. UAVs provide a flexible and low-cost platform for high-resolution data, from which object outlines can be accurately delineated. This delineation could be automated with image analysis methods to improve existing mapping procedures that are cost, time and labor intensive and of little reproducibility. This study investigates a superpixel approach, namely simple linear iterative clustering (SLIC), in terms of its applicability to UAV data. The approach is investigated in terms of its applicability to high-resolution UAV orthoimages and in terms of its ability to delineate object outlines of roads and roofs. Results show that the approach is applicable to UAV orthoimages of 0.05 m GSD and extents of 100 million and 400 million pixels. Further, the approach delineates the objects with the high accuracy provided by the UAV orthoimages at completeness rates of up to 64%. The approach is not suitable as a standalone approach for object delineation. However, it shows high potential for a combination with further methods that delineate objects at higher correctness rates in exchange of a lower localization quality. This study provides a basis for future work that will focus on the incorporation of multiple methods for an interactive, comprehensive and accurate object delineation from UAV data. This aims to support numerous application fields such as topographic and cadastral mapping.
UR - https://ezproxy2.utwente.nl/login?url=https://webapps.itc.utwente.nl/library/2017/conf/koeva_qua.pdf
U2 - 10.5194/isprs-annals-IV-2-W3-9-2017
DO - 10.5194/isprs-annals-IV-2-W3-9-2017
M3 - Chapter
VL - IV-2/W3
T3 - The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
SP - 9
EP - 16
BT - Proceedings of International Conference on Unmanned Aerial Vehicles in Geomatics, 4-7 September 2017, Bonn, Germany. Peer reviewed Annals, Volume IV-2/W3, 201
A2 - Stachniss, C.
A2 - Förstner, W.
A2 - Schneider, J.
PB - International Society for Photogrammetry and Remote Sensing (ISPRS)
T2 - International Conference on Unmanned Aerial Vehicles in Geomatics
Y2 - 4 September 2017 through 7 September 2017
ER -