Sliding wear resistance of metal matrix composite layers prepared by high power laser

V. Ocelík, D. Matthews, J. Th M. De Hosson*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

119 Citations (Scopus)


Two laser surface engineering techniques, Laser Cladding and Laser Melt Injection (LMI), were used to prepare three different metal matrix composite layers with a thickness of about 1 mm and approximately 25-30% volume fraction of ceramic particles. SiC/Al-8Si, WC/Ti-6Al-4V and TiB2/Ti-6Al-4V layers were prepared by a Laser Melt Injection process, whereby additional material in the form of ceramic particles is injected into the molten substrate. As a result, a microstructure characterized by hard ceramic particles distributed in a metal matrix with very strong bonding is formed in the surface layer of the treated metal. A TiB/Ti-6Al-4V metal matrix composite layer was produced on Ti-6Al-4V substrates by conventional laser cladding. A mixture of TiB2/ Ti powders has been used as a precursor to obtain two microstructurally distinct layers, namely eutectic and primary TiB particles dispersed in the Ti-6Al-4V matrix. Sliding wear properties of these metal matrix composites layers were studied at boundary lubrication conditions and compared with the wear of the substrate materials. The observed wear mechanisms are summarized and related to detailed microstructural observations. The layers have been found to show excellent interfacial bonding, coupled with dramatically improved tribological properties expressed through a relative wear resistance value ranging from 30 to 1500.

Original languageEnglish
Pages (from-to)303-315
Number of pages13
JournalSurface and coatings technology
Issue number2-3
Early online date28 Oct 2004
Publication statusPublished - 22 Jul 2005
Externally publishedYes


  • Borides
  • Carbides
  • Laser surface treatment
  • Metal matrix composites
  • Microstructure
  • Scanning Electron Microscopy
  • Wear


Dive into the research topics of 'Sliding wear resistance of metal matrix composite layers prepared by high power laser'. Together they form a unique fingerprint.

Cite this