Smoothed analysis of belief propagation for minimum-cost flow and matching

Tobias Brunsch, Kamiel Cornelissen, Bodo Manthey, Heiko Röglin

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

3 Citations (Scopus)

Abstract

Belief propagation (BP) is a message-passing heuristic for statistical inference in graphical models such as Bayesian networks and Markov random fields. BP is used to compute marginal distributions or maximum likelihood assignments and has applications in many areas, including machine learning, image processing, and computer vision. However, the theoretical understanding of the performance of BP is unsatisfactory. Recently, BP has been applied to combinatorial optimization problems. It has been proved that BP can be used to compute maximum-weight matchings and minimum-cost flows for instances with a unique optimum. The number of iterations needed for this is pseudo-polynomial and hence BP is not efficient in general. We study belief propagation in the framework of smoothed analysis and prove that with high probability the number of iterations needed to compute maximum-weight matchings and minimum-cost flows is bounded by a polynomial if the weights/costs of the edges are randomly perturbed. To prove our upper bounds, we use an isolation lemma by Beier and Vöcking (SIAM J. Comput., 2006) for matching and generalize an isolation lemma for min-cost flow by Gamarnik, Shah, and Wei (Oper. Res., 2012). We also prove almost matching lower tail bounds for the number of iterations that BP needs to converge.
Original languageUndefined
Title of host publicationProceedings of the 7th International Workshop on Algorithms and Computation (WALCOM 2013)
EditorsS. Kumar Ghosh, T. Tokuyama
Place of PublicationBerlin, Germany
PublisherSpringer
Pages182-193
Number of pages12
ISBN (Print)978-3-642-36064-0
DOIs
Publication statusPublished - 2013

Publication series

NameLecture Notes in Computer Science
PublisherSpringer Verlag
Volume7748

Keywords

  • EWI-22420
  • Message-passing algorithms
  • Smoothed Analysis
  • IR-83740
  • METIS-296431
  • Belief propagation
  • Min-cost flow
  • Combinatorial optimization
  • Matching

Cite this