Abstract
The minimum-cost flow problem is a classic problem in combinatorial optimization with various applications. Several pseudo-polynomial, polynomial, and strongly polynomial algorithms have been developed in the past decades, and it seems that both the problem and the algorithms are well understood. However, some of the algorithms' running times observed in empirical studies contrast the running times obtained by worst-case analysis not only in the order of magnitude but also in the ranking when compared to each other. For example, the Successive Shortest Path (SSP) algorithm, which has an exponential worst-case running time, seems to outperform the strongly polynomial Minimum-Mean Cycle Canceling algorithm. To explain this discrepancy, we study the SSP algorithm in the framework of smoothed analysis and establish a bound of O(mn phi (m + n log n)) for its smoothed running time. This shows that worst-case instances for the SSP algorithm are not robust and unlikely to be encountered in practice.
Original language | Undefined |
---|---|
Title of host publication | Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms |
Editors | S. Khanna |
Place of Publication | New Orleans, LA, USA |
Publisher | SIAM |
Pages | 1180-1189 |
Number of pages | 10 |
ISBN (Print) | 978-1-611972-52-8 |
Publication status | Published - 2013 |
Event | 24th ACM-SIAM Symposium on Discrete Algorithms 2013 - Astor Crowne Plaza Hotel, New Orleans, United States Duration: 6 Jan 2013 → 8 Jan 2013 Conference number: 24 https://archive.siam.org/meetings/da13/ |
Publication series
Name | |
---|---|
Publisher | SIAM |
ISSN (Print) | 1557-9468 |
Conference
Conference | 24th ACM-SIAM Symposium on Discrete Algorithms 2013 |
---|---|
Abbreviated title | SODA 2013 |
Country/Territory | United States |
City | New Orleans |
Period | 6/01/13 → 8/01/13 |
Internet address |
Keywords
- METIS-296428
- Min-cost flow
- Smoothed Analysis
- IR-82805
- EWI-22219
- Minimum-cost flow