TY - JOUR
T1 - Solution conditions define morphological homogeneity of alpha-synuclein fibrils
AU - Sidhu, A.
AU - Segers-Nolten, Gezina M.J.
AU - Subramaniam, Vinod
PY - 2014
Y1 - 2014
N2 - The intrinsically disordered human α-synuclein (αSyn) protein exhibits considerable heterogeneity in in vitro fibrillization reactions. Using atomic force microscopy (AFM) we show that depending on the solvent conditions, A140C mutant and wild-type αSyn can be directed to reproducibly form homogeneous populations of fibrils exhibiting regular periodicity. Results from Thioflavin-T fluorescence assays, determination of residual monomer concentrations and native polyacrylamide gel electrophoresis reveal that solvent conditions including EDTA facilitate incorporation of a larger fraction of monomers into fibrils. The fibrils formed in 10 mM Tris–HCl, 10 mM NaCl and 0.1 mM EDTA at pH 7.4 display a narrow distribution of periodicities with an average value of 102 ± 6 nm for the A140C mutant and 107 ± 9 nm for wt αSyn. The ability to produce a homogeneous fibril population can be instrumental in understanding the detailed structural features of fibrils and the fibril assembly process. Moreover, the availability of morphologically well-defined fibrils will enhance the potential for use of amyloids as biological nanomaterials
AB - The intrinsically disordered human α-synuclein (αSyn) protein exhibits considerable heterogeneity in in vitro fibrillization reactions. Using atomic force microscopy (AFM) we show that depending on the solvent conditions, A140C mutant and wild-type αSyn can be directed to reproducibly form homogeneous populations of fibrils exhibiting regular periodicity. Results from Thioflavin-T fluorescence assays, determination of residual monomer concentrations and native polyacrylamide gel electrophoresis reveal that solvent conditions including EDTA facilitate incorporation of a larger fraction of monomers into fibrils. The fibrils formed in 10 mM Tris–HCl, 10 mM NaCl and 0.1 mM EDTA at pH 7.4 display a narrow distribution of periodicities with an average value of 102 ± 6 nm for the A140C mutant and 107 ± 9 nm for wt αSyn. The ability to produce a homogeneous fibril population can be instrumental in understanding the detailed structural features of fibrils and the fibril assembly process. Moreover, the availability of morphologically well-defined fibrils will enhance the potential for use of amyloids as biological nanomaterials
KW - IR-94910
KW - METIS-305311
U2 - 10.1016/j.bbapap.2014.09.007
DO - 10.1016/j.bbapap.2014.09.007
M3 - Article
VL - 1844
SP - 2127
EP - 2134
JO - Biochimica et biophysica acta : proteins and proteomics
JF - Biochimica et biophysica acta : proteins and proteomics
SN - 1570-9639
ER -