Solution conditions define morphological homogeneity of alpha-synuclein fibrils

A. Sidhu, Gezina M.J. Segers-Nolten, Vinod Subramaniam

Research output: Contribution to journalArticleAcademicpeer-review

30 Citations (Scopus)

Abstract

The intrinsically disordered human α-synuclein (αSyn) protein exhibits considerable heterogeneity in in vitro fibrillization reactions. Using atomic force microscopy (AFM) we show that depending on the solvent conditions, A140C mutant and wild-type αSyn can be directed to reproducibly form homogeneous populations of fibrils exhibiting regular periodicity. Results from Thioflavin-T fluorescence assays, determination of residual monomer concentrations and native polyacrylamide gel electrophoresis reveal that solvent conditions including EDTA facilitate incorporation of a larger fraction of monomers into fibrils. The fibrils formed in 10 mM Tris–HCl, 10 mM NaCl and 0.1 mM EDTA at pH 7.4 display a narrow distribution of periodicities with an average value of 102 ± 6 nm for the A140C mutant and 107 ± 9 nm for wt αSyn. The ability to produce a homogeneous fibril population can be instrumental in understanding the detailed structural features of fibrils and the fibril assembly process. Moreover, the availability of morphologically well-defined fibrils will enhance the potential for use of amyloids as biological nanomaterials
Original languageUndefined
Pages (from-to)2127-2134
JournalBiochimica et biophysica acta : proteins and proteomics
Volume1844
DOIs
Publication statusPublished - 2014

Keywords

  • IR-94910
  • METIS-305311

Cite this