Abstract
We present the first application of quantum Monte Carlo (QMC) in its variational flavor combined with the polarizable continuum model (PCM) to perform excited-state geometry optimization in solution. Our implementation of the PCM model is based on a reaction field that includes both volume and surface polarization charges and is determined self-consistently with the molecular wave function during the QMC optimization of the solute geometry. For acrolein, acetone, methylenecyclopropene, and the propenoic acid anion, we compute the optimal exited-state geometries in water and compare our results with the structures obtained with second-order perturbation theory (CASPT2) and other correlated methods, and with time-dependent density functional theory (TDDFT). We find that QMC predicts a structural response to solvation in good agreement with CASPT2 with the only exception of the π → π* state of acrolein where the robustness of the QMC geometry must be contrasted to the sensitivity of the perturbation result to the details of the calculation. As regards TDDFT, we show that all investigated functionals systematically overestimate the geometrical changes from the gas phase to solution, sometimes giving bond variations opposite in trend to QMC
Original language | English |
---|---|
Pages (from-to) | 5528-5537 |
Number of pages | 10 |
Journal | Journal of chemical theory and computation |
Volume | 10 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2014 |
Keywords
- 2023 OA procedure