Abstract
Bilevel programs (BL) form a special class of optimization problems. They appear in many models in economics, game theory and mathematical physics. BL programs show a more complicated structure than standard finite problems. We study the so-called KKT-approach for solving bilevel problems, where the lower level minimality condition is replaced by the KKT- or the FJ-condition. This leads to a special structured mathematical program with complementarity constraints. We analyze the KKT-approach from a generic viewpoint and reveal the advantages and possible drawbacks of this approach for solving BL problems numerically.
Original language | English |
---|---|
Pages (from-to) | 309-332 |
Number of pages | 24 |
Journal | Mathematical programming |
Volume | 138 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - 2013 |
Keywords
- EWI-23989
- IR-87879
- METIS-300168
- Bilevel problems · KKT-condition · FJ-condition · Mathematical programs with complementarity constraints · Genericity · Critical points