Space-time discontinuous Galerkin discretization of rotating shallow water equations on moving grids

V.R. Ambati, Onno Bokhove

    Research output: Book/ReportReportProfessional

    104 Downloads (Pure)


    A space-time discontinuous Galerkin (DG) discretization is presented for the (rotating) shallow water equations over varying topography. We formulate the space-time DG finite element discretization in an efficient and conservative discretization. The HLLC flux is used as numerical flux through the finite element boundaries. When discontinuities are present, we locally apply dissipation around these discontinuities with the help of Krivodonova's discontinuity indicator such that spurious oscillations are suppressed. The non-linear algebraic system resulting from the discretization is solved using a pseudo-time integration with a second-order five-stage Runge-Kutta method. A thorough verification of the space-time DG finite element method is undertaken by comparing numerical and exact solutions. We also carry out a discrete Fourier analysis of the one dimensional linear rotating shallow water equations to show that the method is unconditionally stable with minimal dispersion and dissipation error. The numerical scheme is validated in a novel way by considering various simulations of bore-vortex interactions in combination with a qualitative analysis of PV generation by non-uniform bores. Finally, the space-time DG method is particularly suited for problems where dynamic grid motion is required. To demonstrate this we simulate waves generated by a wave maker and verify these for low amplitude waves where linear theory is approximately valid.
    Original languageUndefined
    Place of PublicationEnschede
    PublisherUniversity of Twente
    Number of pages40
    Publication statusPublished - 6 Oct 2006

    Publication series

    NameApplied Mathematics Memoranda
    PublisherDepartment of Applied Mathematics, University of Twente
    ISSN (Print)0169-2690


    • MSC-35L60
    • EWI-6972
    • IR-66375
    • METIS-238189

    Cite this