Spatio-temporal spectra in the logarithmic layer of wall turbulence: large-eddy simulations and simple models

Michael Wilczek, Richard Johannes Antonius Maria Stevens, Charles Meneveau

Research output: Contribution to journalArticleAcademicpeer-review

45 Citations (Scopus)
1 Downloads (Pure)

Abstract

Motivated by the need to characterize the spatio-temporal structure of turbulence in wall-bounded flows, we study wavenumber–frequency spectra of the streamwise velocity component based on large-eddy simulation (LES) data. The LES data are used to measure spectra as a function of the two wall-parallel wavenumbers and the frequency in the equilibrium (logarithmic) layer. We then reformulate one of the simplest models that is able to reproduce the observations: the random sweeping model with a Gaussian large-scale fluctuating velocity and with additional mean flow. Comparison with LES data shows that the model captures the observed temporal decorrelation, which is related to the Doppler broadening of frequencies. We furthermore introduce a parameterization for the entire wavenumber–frequency spectrum E11(k1,k2,ω;z), where k1, k2 are the streamwise and spanwise wavenumbers, ω is the frequency and z is the distance to the wall. The results are found to be in good agreement with LES data.
Original languageEnglish
Pages (from-to)R1-R12
Number of pages12
JournalJournal of fluid mechanics
Volume769
DOIs
Publication statusPublished - 13 Mar 2015

Keywords

  • IR-95733
  • METIS-310068

Fingerprint

Dive into the research topics of 'Spatio-temporal spectra in the logarithmic layer of wall turbulence: large-eddy simulations and simple models'. Together they form a unique fingerprint.

Cite this