State-of-the-art of battery state-of-charge determination

V. Pop, H.J. Bergveld, P.H.L. Notten, Paulus P.L. Regtien

Research output: Contribution to journalArticleAcademicpeer-review

201 Citations (Scopus)

Abstract

From the early days on, humanity has depended on electricity, a phenomenon without which our technological advancements would not have been possible. With the increased need for mobility, people moved to portable power storage—first for wheeled applications, then for portable and finally nowadays wearable use. Several types of rechargeable battery systems, including those of lead–acid, nickel–cadmium, nickel–metalhydride, lithium ion and lithium-ion polymer exist in the market. The most important of them will be discussed in this review. Almost as long as rechargeable batteries exist, systems able to give an indication about the state-of-charge (SoC) of a battery have been around. Several methods, including those of direct measurements, book-keeping and adaptive systems (Bergveld et al 2002 Battery Management Systems, Design by Modelling (Philips Research Book Series) vol 1 (Boston: Kluwer)) are known in the art for determining the SoC of a cell or battery of cells. An accurate SoC determination method and an understandable and reliable SoC display to the user will improve the performance and reliability, and will ultimately lengthen the lifetime of the battery. However, many examples of poor accuracy and reliability can be found in practice (Bergveld et al 2002 Battery Management Systems, Design by Modelling (Philips Research Book Series) vol 1 (Boston: Kluwer)). This review presents an overview on battery technology and the state-of-the-art of SoC methods. The goal of all the presented SoC indication methods is to design an SoC indication system capable to provide an accurate SoC indication under all realistic user conditions, including those of spread—in both battery and user behaviour, a large temperature and current range and ageing of the battery.
Original languageUndefined
Article number10.1088/0957-0233/16/12/R01
Pages (from-to)R93-R110
Number of pages18
JournalMeasurement science and technology
Volume16
Issue number12
DOIs
Publication statusPublished - Dec 2005

Keywords

  • EWI-12002
  • IR-62192
  • METIS-228696

Cite this

Pop, V., Bergveld, H. J., Notten, P. H. L., & Regtien, P. P. L. (2005). State-of-the-art of battery state-of-charge determination. Measurement science and technology, 16(12), R93-R110. [10.1088/0957-0233/16/12/R01]. https://doi.org/10.1088/0957-0233/16/12/R01
Pop, V. ; Bergveld, H.J. ; Notten, P.H.L. ; Regtien, Paulus P.L. / State-of-the-art of battery state-of-charge determination. In: Measurement science and technology. 2005 ; Vol. 16, No. 12. pp. R93-R110.
@article{f0c8bc6cf5244766a07fc7becd4b007f,
title = "State-of-the-art of battery state-of-charge determination",
abstract = "From the early days on, humanity has depended on electricity, a phenomenon without which our technological advancements would not have been possible. With the increased need for mobility, people moved to portable power storage—first for wheeled applications, then for portable and finally nowadays wearable use. Several types of rechargeable battery systems, including those of lead–acid, nickel–cadmium, nickel–metalhydride, lithium ion and lithium-ion polymer exist in the market. The most important of them will be discussed in this review. Almost as long as rechargeable batteries exist, systems able to give an indication about the state-of-charge (SoC) of a battery have been around. Several methods, including those of direct measurements, book-keeping and adaptive systems (Bergveld et al 2002 Battery Management Systems, Design by Modelling (Philips Research Book Series) vol 1 (Boston: Kluwer)) are known in the art for determining the SoC of a cell or battery of cells. An accurate SoC determination method and an understandable and reliable SoC display to the user will improve the performance and reliability, and will ultimately lengthen the lifetime of the battery. However, many examples of poor accuracy and reliability can be found in practice (Bergveld et al 2002 Battery Management Systems, Design by Modelling (Philips Research Book Series) vol 1 (Boston: Kluwer)). This review presents an overview on battery technology and the state-of-the-art of SoC methods. The goal of all the presented SoC indication methods is to design an SoC indication system capable to provide an accurate SoC indication under all realistic user conditions, including those of spread—in both battery and user behaviour, a large temperature and current range and ageing of the battery.",
keywords = "EWI-12002, IR-62192, METIS-228696",
author = "V. Pop and H.J. Bergveld and P.H.L. Notten and Regtien, {Paulus P.L.}",
year = "2005",
month = "12",
doi = "10.1088/0957-0233/16/12/R01",
language = "Undefined",
volume = "16",
pages = "R93--R110",
journal = "Measurement science and technology",
issn = "0957-0233",
publisher = "IOP Publishing Ltd.",
number = "12",

}

Pop, V, Bergveld, HJ, Notten, PHL & Regtien, PPL 2005, 'State-of-the-art of battery state-of-charge determination' Measurement science and technology, vol. 16, no. 12, 10.1088/0957-0233/16/12/R01, pp. R93-R110. https://doi.org/10.1088/0957-0233/16/12/R01

State-of-the-art of battery state-of-charge determination. / Pop, V.; Bergveld, H.J.; Notten, P.H.L.; Regtien, Paulus P.L.

In: Measurement science and technology, Vol. 16, No. 12, 10.1088/0957-0233/16/12/R01, 12.2005, p. R93-R110.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - State-of-the-art of battery state-of-charge determination

AU - Pop, V.

AU - Bergveld, H.J.

AU - Notten, P.H.L.

AU - Regtien, Paulus P.L.

PY - 2005/12

Y1 - 2005/12

N2 - From the early days on, humanity has depended on electricity, a phenomenon without which our technological advancements would not have been possible. With the increased need for mobility, people moved to portable power storage—first for wheeled applications, then for portable and finally nowadays wearable use. Several types of rechargeable battery systems, including those of lead–acid, nickel–cadmium, nickel–metalhydride, lithium ion and lithium-ion polymer exist in the market. The most important of them will be discussed in this review. Almost as long as rechargeable batteries exist, systems able to give an indication about the state-of-charge (SoC) of a battery have been around. Several methods, including those of direct measurements, book-keeping and adaptive systems (Bergveld et al 2002 Battery Management Systems, Design by Modelling (Philips Research Book Series) vol 1 (Boston: Kluwer)) are known in the art for determining the SoC of a cell or battery of cells. An accurate SoC determination method and an understandable and reliable SoC display to the user will improve the performance and reliability, and will ultimately lengthen the lifetime of the battery. However, many examples of poor accuracy and reliability can be found in practice (Bergveld et al 2002 Battery Management Systems, Design by Modelling (Philips Research Book Series) vol 1 (Boston: Kluwer)). This review presents an overview on battery technology and the state-of-the-art of SoC methods. The goal of all the presented SoC indication methods is to design an SoC indication system capable to provide an accurate SoC indication under all realistic user conditions, including those of spread—in both battery and user behaviour, a large temperature and current range and ageing of the battery.

AB - From the early days on, humanity has depended on electricity, a phenomenon without which our technological advancements would not have been possible. With the increased need for mobility, people moved to portable power storage—first for wheeled applications, then for portable and finally nowadays wearable use. Several types of rechargeable battery systems, including those of lead–acid, nickel–cadmium, nickel–metalhydride, lithium ion and lithium-ion polymer exist in the market. The most important of them will be discussed in this review. Almost as long as rechargeable batteries exist, systems able to give an indication about the state-of-charge (SoC) of a battery have been around. Several methods, including those of direct measurements, book-keeping and adaptive systems (Bergveld et al 2002 Battery Management Systems, Design by Modelling (Philips Research Book Series) vol 1 (Boston: Kluwer)) are known in the art for determining the SoC of a cell or battery of cells. An accurate SoC determination method and an understandable and reliable SoC display to the user will improve the performance and reliability, and will ultimately lengthen the lifetime of the battery. However, many examples of poor accuracy and reliability can be found in practice (Bergveld et al 2002 Battery Management Systems, Design by Modelling (Philips Research Book Series) vol 1 (Boston: Kluwer)). This review presents an overview on battery technology and the state-of-the-art of SoC methods. The goal of all the presented SoC indication methods is to design an SoC indication system capable to provide an accurate SoC indication under all realistic user conditions, including those of spread—in both battery and user behaviour, a large temperature and current range and ageing of the battery.

KW - EWI-12002

KW - IR-62192

KW - METIS-228696

U2 - 10.1088/0957-0233/16/12/R01

DO - 10.1088/0957-0233/16/12/R01

M3 - Article

VL - 16

SP - R93-R110

JO - Measurement science and technology

JF - Measurement science and technology

SN - 0957-0233

IS - 12

M1 - 10.1088/0957-0233/16/12/R01

ER -