Abstract
Biosensors and other biological platform technologies require the functionalization of their surface with receptors to enhance affinity and selectivity. Control over the functionalization density is required to tune the platform's properties. Streptavidin (SAv) monolayers are widely used to immobilize biotinylated proteins, receptors, and DNA. The SAv density on a surface can be varied easily, but the predictability is dependent on the method by which the SAv is immobilized. In this study we show a method to quantitatively predict the SAv coverage on biotinylated surfaces. The method is validated by measuring the SAv coverage on supported lipid bilayers with a range of biotin contents and two different main phase lipids and by using quartz crystal microbalance and localized surface plasmon resonance. We explore a predictive model of the biotin-dependent SAv coverage without any fit parameters. Model and data allow to predict the SAv coverage based on the biotin coverage, in both the low- and high-density regimes. This is of special importance in applications with multivalent binding where control over surface receptor density is required, but a direct measurement is not possible.
Original language | English |
---|---|
Pages (from-to) | 58114-58123 |
Number of pages | 10 |
Journal | ACS Applied Materials and Interfaces |
Volume | 13 |
Issue number | 48 |
DOIs | |
Publication status | Published - 8 Dec 2021 |
Keywords
- biotin
- localized surface plasmon resonance (LSPR)
- quartz crystal microbalance (QCM)
- self-assembled monolayer (SAM)
- streptavidin (SAv)
- supported lipid bilayer (SLB)
- surface coverage
- UT-Hybrid-D