Abstract
The interaction of atomic (D) and molecular (D2) deuterium, as present in a (D + D2) gas mixture, with single-wall carbon nanotubes (SWNTs) has been studied by means of a combination of scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The SWNT samples were exposed to the gas mixture, produced by thermal dissociation of D2 on a hot W filament, its temperature, TW, being kept at 1020 and 1550 K for a deuterium pressure of 0.6 and 60 Pa, respectively. Prolonged interaction of the low-pressure (D + D2) gas mixture produced at TW = 1020 K leads to a conglomeration of the SWNT bundles into larger diameter ropes of square and triangular cross-section, covered by nano-aggregates of graphite material. Both the coalescence of single SWNTs and a massive reconstruction of bundles of SWNTs into a “coral reef‿-like structure were found to occur after prolonged exposure of SWNTs to the high-pressure (D + D2) gas mixture produced at TW = 1550 K. This structure is formed by the encapsulated Fe nanoparticles and deuterocarbon-like species appearing as a result of the deuterium interaction with the SWNT bundles accompanied by partial erosion of the SWNT material. The XPS valence-band spectra disclose electronic features characteristic for a hydrogen-plasma modified multi-wall carbon nanotube (MWNT)-like structure as a result of an intensive (D + D2) induced transformation of the SWNTs into the “coral reef‿-like structure.
Original language | English |
---|---|
Pages (from-to) | 1073-1083 |
Number of pages | 11 |
Journal | Carbon |
Volume | 43 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2005 |
Keywords
- X-ray photoelectron spectroscopy
- Scanning Electron Microscopy
- Transmission electron microscopy
- Microstruct
- METIS-229809
- IR-76464
- Carbon nanotubes
- EWI-19861