TY - JOUR
T1 - Structural, electrical, and optical properties of La1-z YzHx switchable mirrors
AU - van Gogh, A.T.M.
AU - Nagengast, D.G.
AU - Kooij, Ernst S.
AU - Koeman, N.J.
AU - Rector, J.H.
AU - Griessen, R.
AU - Flipse, C.F.J.
AU - Smeets, R.J.J.G.A.M.
PY - 2001
Y1 - 2001
N2 - Thin La1-zYzHx films, in the composition range 0<z<1 and 0<x<3, are studied using x-ray diffraction, dc resistivity measurements, reflectance-transmittance measurements, and ellipsometry in the visible and near-infrared spectral range. For x=0 the structural phase diagram is similar to that of the bulk system. Upon hydrogen absorption and desorption, the La1-zYzHx films do not disproportionate. All dihydrides have a fcc structure with a continuous shift of the lattice parameter, whereas the trihydrides undergo a transition from a fcc lattice structure for 0<z<0.67 to a hexagonal lattice structure for 0.81<z<1. No significant thin-film effects occur in the structural, electrical, and optical properties, whereas disorder effects are observed in the x-ray coherence length, the electron relaxation time at both zero and optical frequencies, and in the optical properties of the trihydrides. In LaH2 a similar dihydride transmission window is observed as in YH2. The suppression of this window upon alloying is a disorder effect. As in the case of their parent materials, all La1-zYzHx alloys (both cubic and hexagonal) exhibit a metal-insulator transition for 2<x<3, which is a clear demonstration of the robustness of the metal-insulator transition in switchable mirrors. The optical band-gap shifts from 1.87±0.03 eV for LaH3 to 2.63±0.03 eV for YH3. The optical properties suggest that the fundamental band gap is 1–1.8 eV lower.
AB - Thin La1-zYzHx films, in the composition range 0<z<1 and 0<x<3, are studied using x-ray diffraction, dc resistivity measurements, reflectance-transmittance measurements, and ellipsometry in the visible and near-infrared spectral range. For x=0 the structural phase diagram is similar to that of the bulk system. Upon hydrogen absorption and desorption, the La1-zYzHx films do not disproportionate. All dihydrides have a fcc structure with a continuous shift of the lattice parameter, whereas the trihydrides undergo a transition from a fcc lattice structure for 0<z<0.67 to a hexagonal lattice structure for 0.81<z<1. No significant thin-film effects occur in the structural, electrical, and optical properties, whereas disorder effects are observed in the x-ray coherence length, the electron relaxation time at both zero and optical frequencies, and in the optical properties of the trihydrides. In LaH2 a similar dihydride transmission window is observed as in YH2. The suppression of this window upon alloying is a disorder effect. As in the case of their parent materials, all La1-zYzHx alloys (both cubic and hexagonal) exhibit a metal-insulator transition for 2<x<3, which is a clear demonstration of the robustness of the metal-insulator transition in switchable mirrors. The optical band-gap shifts from 1.87±0.03 eV for LaH3 to 2.63±0.03 eV for YH3. The optical properties suggest that the fundamental band gap is 1–1.8 eV lower.
KW - METIS-202316
KW - IR-75187
U2 - 10.1103/PhysRevB.63.195105
DO - 10.1103/PhysRevB.63.195105
M3 - Article
SN - 0163-1829
VL - 63
SP - 195105-1-195105-219
JO - Physical Review B (Condensed Matter and Materials Physics)
JF - Physical Review B (Condensed Matter and Materials Physics)
IS - 19
ER -