TY - JOUR
T1 - Structure and formation of a gel of colloidal disks
AU - Kroon, Mark
AU - Vos, Willem L.
AU - Wegdam, Gerard H.
PY - 1998/2/1
Y1 - 1998/2/1
N2 - We have performed static scattering experiments on the transition in time from a fluidlike sol to a solidlike gel of a suspension of disk-shaped charged colloidal particles. The combination of static light scattering and small angle x-ray scattering probes more than three orders of magnitude in the scattering vector [Formula Presented]. At the smallest [Formula Presented] the static structure factor [Formula Presented] shows a [Formula Presented] dependence in both the sol and gel state. The algebraic exponent [Formula Presented] evolves from [Formula Presented] to [Formula Presented] during the gelation. We find that the sol is not comparable to a simple liquid but rather to a low-viscosity precursor of the gel. At intermediate [Formula Presented] a plateau connects this regime to the form factor [Formula Presented] of the colloidal disks, which is observed at the largest [Formula Presented]. On the plateau a small peak related to nearest-neighbor correlations is observed, which decays before gelation occurs. After application of shear on the suspensions we have observed the rapid formation of nematiclike order of the colloidal disks. This order decays in time due to reorientation of the colloidal disks while the final gel state is reached. The formation of the gel does not proceed via aggregation to form ever larger clusters. Based on our findings we propose that reorientation of the charged particles is the mechanism by which the gelation occurs.
AB - We have performed static scattering experiments on the transition in time from a fluidlike sol to a solidlike gel of a suspension of disk-shaped charged colloidal particles. The combination of static light scattering and small angle x-ray scattering probes more than three orders of magnitude in the scattering vector [Formula Presented]. At the smallest [Formula Presented] the static structure factor [Formula Presented] shows a [Formula Presented] dependence in both the sol and gel state. The algebraic exponent [Formula Presented] evolves from [Formula Presented] to [Formula Presented] during the gelation. We find that the sol is not comparable to a simple liquid but rather to a low-viscosity precursor of the gel. At intermediate [Formula Presented] a plateau connects this regime to the form factor [Formula Presented] of the colloidal disks, which is observed at the largest [Formula Presented]. On the plateau a small peak related to nearest-neighbor correlations is observed, which decays before gelation occurs. After application of shear on the suspensions we have observed the rapid formation of nematiclike order of the colloidal disks. This order decays in time due to reorientation of the colloidal disks while the final gel state is reached. The formation of the gel does not proceed via aggregation to form ever larger clusters. Based on our findings we propose that reorientation of the charged particles is the mechanism by which the gelation occurs.
UR - http://www.scopus.com/inward/record.url?scp=85006406315&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.57.1962
DO - 10.1103/PhysRevE.57.1962
M3 - Article
AN - SCOPUS:85006406315
VL - 57
SP - 1962
EP - 1970
JO - Physical review E: covering statistical, nonlinear, biological, and soft matter physics
JF - Physical review E: covering statistical, nonlinear, biological, and soft matter physics
SN - 2470-0045
IS - 2
ER -