Studies of a Terawatt X-Ray Free-Electron Laser

H.P. Freund, P.J.M. van der Slot (Corresponding Author)

Research output: Contribution to journalArticleAcademicpeer-review

7 Citations (Scopus)
71 Downloads (Pure)

Abstract

The resolution in x-ray coherent diffractive imaging applications can be improved by increasing the number of photons in the optical pulse. An x-ray free-electron laser (XFEL) producing pulses with terawatt (TW) peak power and about 10 femtosecond duration can satisfy this requirement. In this paper, we consider the conditions necessary for achieving powers in excess of 1 TW in a 1.5 Å FEL. Using the MINERVA simulation code, an extensive steady-state analysis has been conducted using a variety of undulator and focusing configurations. In particular, strong focusing using FODO lattices is compared with the natural, weak focusing inherent in helical undulators. It is found that the most important requirement to reach TW powers is extreme transverse compression of the electron beam in a strong FODO lattice in conjunction with a tapered undulator. We find that when the current density reaches extremely high levels, that the characteristic growth length in the tapered undulator becomes shorter than the Rayleigh range giving rise to optical guiding. We also show that planar undulators can reach near-TW power levels. In addition, preliminary time-dependent simulations are also discussed and show that TW power levels can be achieved both for self-seeding and pure self-amplified spontaneous emission. This result shows that high-resolution, single molecule diffractive imaging may be realized using XFELs.
Original languageEnglish
Article number073017
JournalNew journal of physics
Volume20
Issue number7
DOIs
Publication statusPublished - 11 Jul 2018

Keywords

  • free-electron lasers
  • x-ray sources
  • strong electron beam focusing

Fingerprint

Dive into the research topics of 'Studies of a Terawatt X-Ray Free-Electron Laser'. Together they form a unique fingerprint.

Cite this