TY - JOUR
T1 - Studies on neptunium complexation with CMPO- and diglycolamide-functionalized ionic liquids
T2 - experimental and computational studies
AU - Sengupta, Arijit
AU - Mohapatra, Prasanta Kumar
AU - Pathak, Priyanath
AU - Ghanty, Tapan Kumar
AU - Verboom, Willem
PY - 2017
Y1 - 2017
N2 - The complexation of neptunium in its 4+ and 6+ oxidation states was investigated using two task-specific ionic liquids (TSIL), namely, CMPO (carbamoylmethylphosphine oxide)-TSIL (LI) and DGA (diglycolamide)-TSIL (LII), respectively, using liquid-liquid extraction, UV-vis spectroscopy and DFT calculations. The extraction of both Np4+ and NpO2 2+ ions was found to follow a cation-exchange mechanism and the extracted species contained one TSIL unit per metal ion, as well as nitrate ions and water, as indicated by the slope analysis method. LI resulted in higher complex formation constants than LII in spite of the possible tridentate nature of the complexes in the latter case. Thermodynamic parameters were determined, which could explain the nature of the extracted species. The facile stripping of the extracted metal ions suggested the possible reusability of the solvent systems. UV-vis spectroscopic studies showed an entirely different mode of complexation of the extracts in LI and LII in comparison to that in n-dodecane, which confirmed a different extraction mechanism. Computational studies were carried out to obtain optimized structures of the complexes, which included nitrate ions and water molecules in the inner coordination sphere.
AB - The complexation of neptunium in its 4+ and 6+ oxidation states was investigated using two task-specific ionic liquids (TSIL), namely, CMPO (carbamoylmethylphosphine oxide)-TSIL (LI) and DGA (diglycolamide)-TSIL (LII), respectively, using liquid-liquid extraction, UV-vis spectroscopy and DFT calculations. The extraction of both Np4+ and NpO2 2+ ions was found to follow a cation-exchange mechanism and the extracted species contained one TSIL unit per metal ion, as well as nitrate ions and water, as indicated by the slope analysis method. LI resulted in higher complex formation constants than LII in spite of the possible tridentate nature of the complexes in the latter case. Thermodynamic parameters were determined, which could explain the nature of the extracted species. The facile stripping of the extracted metal ions suggested the possible reusability of the solvent systems. UV-vis spectroscopic studies showed an entirely different mode of complexation of the extracts in LI and LII in comparison to that in n-dodecane, which confirmed a different extraction mechanism. Computational studies were carried out to obtain optimized structures of the complexes, which included nitrate ions and water molecules in the inner coordination sphere.
KW - n/a OA procedure
UR - http://www.scopus.com/inward/record.url?scp=85010431410&partnerID=8YFLogxK
U2 - 10.1039/C6NJ03102A
DO - 10.1039/C6NJ03102A
M3 - Article
AN - SCOPUS:85010431410
VL - 41
SP - 836
EP - 844
JO - New journal of chemistry
JF - New journal of chemistry
SN - 1144-0546
IS - 2
ER -