TY - JOUR
T1 - Supervised and Semi-Supervised Multi-View Canonical Correlation Analysis Ensemble for Heterogeneous Domain Adaptation in Remote Sensing Image Classification
AU - Samat, Alim
AU - Persello, Claudio
AU - Gamba, Paolo
AU - Liu, Sicong
AU - Abuduwaili, Jilili
AU - Li, Erzhu
PY - 2017
Y1 - 2017
N2 - In this paper, we present the supervised multi-view canonical correlation analysis ensemble (SMVCCAE) and its semi-supervised version (SSMVCCAE), which are novel techniques designed to address heterogeneous domain adaptation problems, i.e., situations in which the data to be processed and recognized are collected from different heterogeneous domains. Specifically, the multi-view canonical correlation analysis scheme is utilized to extract multiple correlation subspaces that are useful for joint representations for data association across domains. This scheme makes homogeneous domain adaption algorithms suitable for heterogeneous domain adaptation problems. Additionally, inspired by fusion methods such as Ensemble Learning (EL), this work proposes a weighted voting scheme based on canonical correlation coefficients to combine classification results in multiple correlation subspaces. Finally, the semi-supervised MVCCAE extends the original procedure by incorporating multiple speed-up spectral regression kernel discriminant analysis (SRKDA). To validate the performances of the proposed supervised procedure, a single-view canonical analysis (SVCCA) with the same base classifier (Random Forests) is used. Similarly, to evaluate the performance of the semi-supervised approach, a comparison is made with other techniques such as Logistic label propagation (LLP) and the Laplacian support vector machine (LapSVM). All of the approaches are tested on two real hyperspectral images, which are considered the target domain, with a classifier trained from synthetic low-dimensional multispectral images, which are considered the original source domain. The experimental results confirm that multi-view canonical correlation can overcome the limitations of SVCCA. Both of the proposed procedures outperform the ones used in the comparison with respect to not only the classification accuracy but also the computational efficiency. Moreover, this research shows that canonical correlation weighted voting (CCWV) is a valid option with respect to other ensemble schemes and that because of their ability to balance diversity and accuracy, canonical views extracted using partially joint random view generation are more effective than those obtained by exploiting disjoint random view generation.
AB - In this paper, we present the supervised multi-view canonical correlation analysis ensemble (SMVCCAE) and its semi-supervised version (SSMVCCAE), which are novel techniques designed to address heterogeneous domain adaptation problems, i.e., situations in which the data to be processed and recognized are collected from different heterogeneous domains. Specifically, the multi-view canonical correlation analysis scheme is utilized to extract multiple correlation subspaces that are useful for joint representations for data association across domains. This scheme makes homogeneous domain adaption algorithms suitable for heterogeneous domain adaptation problems. Additionally, inspired by fusion methods such as Ensemble Learning (EL), this work proposes a weighted voting scheme based on canonical correlation coefficients to combine classification results in multiple correlation subspaces. Finally, the semi-supervised MVCCAE extends the original procedure by incorporating multiple speed-up spectral regression kernel discriminant analysis (SRKDA). To validate the performances of the proposed supervised procedure, a single-view canonical analysis (SVCCA) with the same base classifier (Random Forests) is used. Similarly, to evaluate the performance of the semi-supervised approach, a comparison is made with other techniques such as Logistic label propagation (LLP) and the Laplacian support vector machine (LapSVM). All of the approaches are tested on two real hyperspectral images, which are considered the target domain, with a classifier trained from synthetic low-dimensional multispectral images, which are considered the original source domain. The experimental results confirm that multi-view canonical correlation can overcome the limitations of SVCCA. Both of the proposed procedures outperform the ones used in the comparison with respect to not only the classification accuracy but also the computational efficiency. Moreover, this research shows that canonical correlation weighted voting (CCWV) is a valid option with respect to other ensemble schemes and that because of their ability to balance diversity and accuracy, canonical views extracted using partially joint random view generation are more effective than those obtained by exploiting disjoint random view generation.
KW - ITC-ISI-JOURNAL-ARTICLE
KW - ITC-GOLD
U2 - 10.3390/rs9040337
DO - 10.3390/rs9040337
M3 - Article
SN - 2072-4292
VL - 9
JO - Remote sensing
JF - Remote sensing
IS - 4
M1 - 337
ER -