Surfactant-dependent critical interfacial tension in silicon carbide membranes for produced water treatment

Ettore Virga, Bernard Bos, P. M. Biesheuvel, Arian Nijmeijer, Wiebe M. de Vos*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

10 Citations (Scopus)
95 Downloads (Pure)


During fossil oil extraction, a complex water stream known as produced water (PW), is co-extracted. Membrane treatment makes PW re-use possible, but fouling and oil permeation remain major challenges. In this work, membrane fouling and oil retention of Synthetic PW stabilized with a cationic, anionic, zwitterionic or nonionic surfactant, were studied at various surfactant and salt concentrations. We discuss our results in the framework of the Young-Laplace (YL) equation, which predicts for a given membrane, pressure and oil-membrane contact angle, a critical interfacial tension (IFT) below which oil permeation should occur. We observe such a transition from high to low oil retention with decreasing IFT for the anionic (SDS), cationic (CTAB) and non-ionic (TX) surfactant, but at significantly higher critical IFTs than predicted by YL. On the other side, for the zwitterionic DDAPS we do not observe a drop in oil retention, even at the lowest IFT. The discrepancy between our findings and the critical IFT predicted by YL can be explained by the difference between the measured contact angle and the effective contact angle at the wall of the membrane pores. This leads to a surfactant-dependent critical IFT. Additionally, our results point out that zwitterionic surfactants even at the lowest IFT did not present a critical IFT and exhibited low fouling and low oil permeation.

Original languageEnglish
Pages (from-to)222-231
Number of pages10
JournalJournal of colloid and interface science
Early online date13 Mar 2020
Publication statusPublished - 1 Jul 2020


  • UT-Hybrid-D
  • Produced water treatment
  • Surfactants
  • Ceramic membranes


Dive into the research topics of 'Surfactant-dependent critical interfacial tension in silicon carbide membranes for produced water treatment'. Together they form a unique fingerprint.

Cite this