TY - UNPB
T1 - Survey on Automated Short Answer Grading with Deep Learning
T2 - from Word Embeddings to Transformers
AU - Haller, Stefan
AU - Aldea, Adina
AU - Seifert, Christin
AU - Strisciuglio, Nicola
N1 - Under review
PY - 2022/3/11
Y1 - 2022/3/11
N2 - Automated short answer grading (ASAG) has gained attention in education as a means to scale educational tasks to the growing number of students. Recent progress in Natural Language Processing and Machine Learning has largely influenced the field of ASAG, of which we survey the recent research advancements. We complement previous surveys by providing a comprehensive analysis of recently published methods that deploy deep learning approaches. In particular, we focus our analysis on the transition from hand engineered features to representation learning approaches, which learn representative features for the task at hand automatically from large corpora of data. We structure our analysis of deep learning methods along three categories: word embeddings, sequential models, and attention-based methods. Deep learning impacted ASAG differently than other fields of NLP, as we noticed that the learned representations alone do not contribute to achieve the best results, but they rather show to work in a complementary way with hand-engineered features. The best performance are indeed achieved by methods that combine the carefully hand-engineered features with the power of the semantic descriptions provided by the latest models, like transformers architectures. We identify challenges and provide an outlook on research direction that can be addressed in the future
AB - Automated short answer grading (ASAG) has gained attention in education as a means to scale educational tasks to the growing number of students. Recent progress in Natural Language Processing and Machine Learning has largely influenced the field of ASAG, of which we survey the recent research advancements. We complement previous surveys by providing a comprehensive analysis of recently published methods that deploy deep learning approaches. In particular, we focus our analysis on the transition from hand engineered features to representation learning approaches, which learn representative features for the task at hand automatically from large corpora of data. We structure our analysis of deep learning methods along three categories: word embeddings, sequential models, and attention-based methods. Deep learning impacted ASAG differently than other fields of NLP, as we noticed that the learned representations alone do not contribute to achieve the best results, but they rather show to work in a complementary way with hand-engineered features. The best performance are indeed achieved by methods that combine the carefully hand-engineered features with the power of the semantic descriptions provided by the latest models, like transformers architectures. We identify challenges and provide an outlook on research direction that can be addressed in the future
KW - cs.CL
KW - cs.AI
KW - cs.LG
M3 - Preprint
BT - Survey on Automated Short Answer Grading with Deep Learning
PB - ArXiv.org
ER -