Abstract
Objective: This study is aimed at assessing symbolic dynamics as a reliable technique to characterize complex fluctuations of portable oximetry in the context of automated detection of childhood obstructive sleep apnoea-hypopnoea syndrome (OSAHS). Approach: Nocturnal oximetry signals from 142 children with suspected OSAHS were acquired using the Phone Oximeter: a portable device that integrates a pulse oximeter with a smartphone. An apnoea-hypopnoea index (AHI) ⩾ 5 events h−1 from simultaneous in-lab polysomnography was used to confirm moderate-to-severe childhood OSAHS. Symbolic dynamics was used to parameterise non-linear changes in the overnight oximetry
profile. Conventional indices, anthropometric measures, and time-domain linear statistics were also considered. Forward stepwise logistic regression was used to obtain an optimum feature subset. Logistic regression (LR) was used to identify children with moderate-to-severe OSAHS. Main results: The histogram of 3-symbol words from symbolic dynamics showed significant differences (p < 0.01) between children with AHI < 5 events h−1 and moderate-to-severe patients (AHI ⩾ 5 events h−1). Words representing increasing oximetry values after apnoeic events (re-saturations) showed relevant diagnostic information. Regarding the performance of individual characterization approaches, the LR model composed of features from symbolic dynamics alone reached a maximum performance of 78.4% accuracy (65.2% sensitivity; 86.8% specificity) and 0.83 area under the ROC curve (AUC). The classification performance improved combining all features. The optimum model from feature selection achieved 83.3% accuracy (73.5% sensitivity; 89.5% specificity) and 0.89 AUC, significantly (p <0.01) outperforming the other models. Significance: Symbolic dynamics provides complementary information to conventional oximetry analysis enabling reliable detection of moderate-to-severe paediatric OSAHS from portable oximetry.
Original language | English |
---|---|
Article number | 104002 |
Number of pages | 16 |
Journal | Physiological measurement |
Volume | 39 |
Issue number | 10 |
Early online date | 19 Sept 2018 |
DOIs | |
Publication status | Published - 11 Oct 2018 |
Keywords
- Paediatric obstructive sleep apnoea-hypopnoea syndrome
- Nocturnal oximetry
- Portable
- Signal processing
- Symbolic dynamics
- Pattern recognition
- n/a OA procedure