TY - JOUR
T1 - Synchronization of Phase Oscillators on the Hierarchical Lattice
AU - Garlaschelli, D.
AU - den Hollander, F.
AU - Meylahn, J.M.
AU - Zeegers, B.
N1 - Funding Information:
Acknowledgements DG is supported by EU-Project 317532-MULTIPLEX. FdH and JM are supported by NWO Gravitation Grant 024.002.003–NETWORKS. The authors are grateful to G. Giacomin for critical remarks.
Publisher Copyright:
© 2018, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2019/1/15
Y1 - 2019/1/15
N2 - Synchronization of neurons forming a network with a hierarchical structure is essential for the brain to be able to function optimally. In this paper we study synchronization of phase oscillators on the most basic example of such a network, namely, the hierarchical lattice. Each site of the lattice carries an oscillator that is subject to noise. Pairs of oscillators interact with each other at a strength that depends on their hierarchical distance, modulated by a sequence of interaction parameters. We look at block averages of the oscillators on successive hierarchical scales, which we think of as block communities. In the limit as the number of oscillators per community tends to infinity, referred to as the hierarchical mean-field limit, we find a separation of time scales, i.e., each block community behaves like a single oscillator evolving on its own time scale. We argue that the evolution of the block communities is given by a renormalized mean-field noisy Kuramoto equation, with a synchronization level that depends on the hierarchical scale of the block community. We find three universality classes for the synchronization levels on successive hierarchical scales, characterized in terms of the sequence of interaction parameters. What makes our model specifically challenging is the non-linearity of the interaction between the oscillators. The main results of our paper therefore come in three parts: (I) a conjecture about the nature of the renormalisation transformation connecting successive hierarchical scales; (II) a truncation approximation that leads to a simplified renormalization transformation; (III) a rigorous analysis of the simplified renormalization transformation. We provide compelling arguments in support of (I) and (II), but a full verification remains an open problem.
AB - Synchronization of neurons forming a network with a hierarchical structure is essential for the brain to be able to function optimally. In this paper we study synchronization of phase oscillators on the most basic example of such a network, namely, the hierarchical lattice. Each site of the lattice carries an oscillator that is subject to noise. Pairs of oscillators interact with each other at a strength that depends on their hierarchical distance, modulated by a sequence of interaction parameters. We look at block averages of the oscillators on successive hierarchical scales, which we think of as block communities. In the limit as the number of oscillators per community tends to infinity, referred to as the hierarchical mean-field limit, we find a separation of time scales, i.e., each block community behaves like a single oscillator evolving on its own time scale. We argue that the evolution of the block communities is given by a renormalized mean-field noisy Kuramoto equation, with a synchronization level that depends on the hierarchical scale of the block community. We find three universality classes for the synchronization levels on successive hierarchical scales, characterized in terms of the sequence of interaction parameters. What makes our model specifically challenging is the non-linearity of the interaction between the oscillators. The main results of our paper therefore come in three parts: (I) a conjecture about the nature of the renormalisation transformation connecting successive hierarchical scales; (II) a truncation approximation that leads to a simplified renormalization transformation; (III) a rigorous analysis of the simplified renormalization transformation. We provide compelling arguments in support of (I) and (II), but a full verification remains an open problem.
KW - Block communities
KW - Hierarchical lattice
KW - Noisy Kuramoto model
KW - Phase oscillators
KW - Renormalization
KW - Universality classes
KW - n/a OA procedure
UR - http://www.scopus.com/inward/record.url?scp=85058433750&partnerID=8YFLogxK
U2 - 10.1007/s10955-018-2208-5
DO - 10.1007/s10955-018-2208-5
M3 - Article
SN - 0022-4715
VL - 174
SP - 188
EP - 218
JO - Journal of statistical physics
JF - Journal of statistical physics
IS - 1
ER -