Synchronization of Phase Oscillators on the Hierarchical Lattice

D. Garlaschelli, F. den Hollander, J.M. Meylahn*, B. Zeegers

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

6 Citations (Scopus)

Abstract

Synchronization of neurons forming a network with a hierarchical structure is essential for the brain to be able to function optimally. In this paper we study synchronization of phase oscillators on the most basic example of such a network, namely, the hierarchical lattice. Each site of the lattice carries an oscillator that is subject to noise. Pairs of oscillators interact with each other at a strength that depends on their hierarchical distance, modulated by a sequence of interaction parameters. We look at block averages of the oscillators on successive hierarchical scales, which we think of as block communities. In the limit as the number of oscillators per community tends to infinity, referred to as the hierarchical mean-field limit, we find a separation of time scales, i.e., each block community behaves like a single oscillator evolving on its own time scale. We argue that the evolution of the block communities is given by a renormalized mean-field noisy Kuramoto equation, with a synchronization level that depends on the hierarchical scale of the block community. We find three universality classes for the synchronization levels on successive hierarchical scales, characterized in terms of the sequence of interaction parameters. What makes our model specifically challenging is the non-linearity of the interaction between the oscillators. The main results of our paper therefore come in three parts: (I) a conjecture about the nature of the renormalisation transformation connecting successive hierarchical scales; (II) a truncation approximation that leads to a simplified renormalization transformation; (III) a rigorous analysis of the simplified renormalization transformation. We provide compelling arguments in support of (I) and (II), but a full verification remains an open problem.

Original languageEnglish
Pages (from-to)188-218
Number of pages31
JournalJournal of statistical physics
Volume174
Issue number1
DOIs
Publication statusPublished - 15 Jan 2019
Externally publishedYes

Keywords

  • Block communities
  • Hierarchical lattice
  • Noisy Kuramoto model
  • Phase oscillators
  • Renormalization
  • Universality classes
  • n/a OA procedure

Fingerprint

Dive into the research topics of 'Synchronization of Phase Oscillators on the Hierarchical Lattice'. Together they form a unique fingerprint.

Cite this