TY - JOUR
T1 - Synthesis and Engineering of Hyaluronic Acid-Gelatin Hydrogels with Improved Cellular Attachment and Growth
AU - Banigo, Alma Tamunonengiofori
AU - Konings, Irene B.M.
AU - Nauta, Laura
AU - Zoetebier, Bram
AU - Karperien, Marcel
N1 - Publisher Copyright:
© 2024 by the authors.
Financial transaction number:
2500167596
PY - 2024/12
Y1 - 2024/12
N2 - Injectable hydrogels are promising materials for cartilage regeneration in tissue engineering due to their tunable crosslinking rates, mechanical properties, and biodegradation profiles. This study investigates the chondrogenic potential of hyaluronic acid (HA) hydrogels crosslinked via tyramine (TA) moieties, with and without gelatin modified with TA (Gel-TA). Incorporating Gel-TA improved cell viability, spreading, and cartilage matrix deposition, particularly in medium and high molecular weight (MMW and HMW) HA-TA/Gel-TA hydrogels. Although the hydrogels’ molecular weight did not significantly alter stiffness, MMW and HMW HA-TA/Gel-TA formulations exhibited enhanced functional properties such as slower degradation and superior cartilage matrix deposition. These attributes, coupled with Gel-TA’s effects, underscore the importance of both molecular weight and biofunctional components in hydrogel design for cartilage regeneration. While low molecular weight (LMW) HA-TA hydrogels offered excellent injectability and supported high cell viability, they degraded rapidly and exhibited reduced cartilage matrix formation. Gel-TA enhanced cell adhesion and spreading by providing integrin-binding sites and promoted collagen type II deposition, crucial for cartilage regeneration. Moreover, the increased stiffness of MMW and HMW HA-TA/Gel-TA hydrogels facilitated extracellular matrix production. These findings show the potential of Gel-TA-modified HA-TA hydrogels for cartilage tissue engineering, with the opportunity for further optimization through the incorporation of bioactive components.
AB - Injectable hydrogels are promising materials for cartilage regeneration in tissue engineering due to their tunable crosslinking rates, mechanical properties, and biodegradation profiles. This study investigates the chondrogenic potential of hyaluronic acid (HA) hydrogels crosslinked via tyramine (TA) moieties, with and without gelatin modified with TA (Gel-TA). Incorporating Gel-TA improved cell viability, spreading, and cartilage matrix deposition, particularly in medium and high molecular weight (MMW and HMW) HA-TA/Gel-TA hydrogels. Although the hydrogels’ molecular weight did not significantly alter stiffness, MMW and HMW HA-TA/Gel-TA formulations exhibited enhanced functional properties such as slower degradation and superior cartilage matrix deposition. These attributes, coupled with Gel-TA’s effects, underscore the importance of both molecular weight and biofunctional components in hydrogel design for cartilage regeneration. While low molecular weight (LMW) HA-TA hydrogels offered excellent injectability and supported high cell viability, they degraded rapidly and exhibited reduced cartilage matrix formation. Gel-TA enhanced cell adhesion and spreading by providing integrin-binding sites and promoted collagen type II deposition, crucial for cartilage regeneration. Moreover, the increased stiffness of MMW and HMW HA-TA/Gel-TA hydrogels facilitated extracellular matrix production. These findings show the potential of Gel-TA-modified HA-TA hydrogels for cartilage tissue engineering, with the opportunity for further optimization through the incorporation of bioactive components.
KW - cartilage matrix formation
KW - cell morphology
KW - gelatin
KW - hyaluronic acid hydrogels
UR - http://www.scopus.com/inward/record.url?scp=85211943623&partnerID=8YFLogxK
U2 - 10.3390/polym16233410
DO - 10.3390/polym16233410
M3 - Article
AN - SCOPUS:85211943623
SN - 2073-4360
VL - 16
JO - Polymers
JF - Polymers
IS - 23
M1 - 3410
ER -