Synthesis and Optimisation of Large Stroke Flexure Hinges

Research output: Chapter in Book/Report/Conference proceedingChapterAcademicpeer-review

14 Downloads (Pure)

Abstract

Flexure hinges are advantageous for use in high-precision applications because of their lack of hysteresis, friction and backlash. However, their range of motion is limited due to increasing stresses and a decreasing support stiffness at large strokes. Currently available hinges are typically designed for strokes of up to 10 ∘ and only a small number of hinges achieve a stroke of 40 ∘ . In this paper we present hinge concepts with a stroke up to 90 ∘ . On the one hand, the conceptual design of such hinges is addressed and, on the other hand, a method to optimise the design of such hinges is presented. The hinge performance is measured by evaluating the natural frequency of the second relevant eigenmode of the hinge with a specific load. For best performance the minimal value for this frequency throughout the full operating range is maximised. Analysing known hinge concepts in view of this criterion gives insight in the strengths and weaknesses of these hinges. This knowledge helps to improve the hinge layout. Also the possibility of stacking multiple hinges is considered. To find the optimal geometric parameters of a given design, a numerical optimisation routine is formulated and implemented, making use of the tools present in the ANSYS finite element program. Two types of conceptual hinges are synthesised and optimised for a range of ±45 ∘. Their behaviour is studied and compared to a commonly used three flexure cross hinge that is also optimised for this large stroke. A significant performance gain is found for the new hinge concepts. The paper shows that it is possible to design flexure hinges for large strokes of up to 90 ∘. And, more importantly, a method for analysing their performance and optimizing their geometry has been established. The method allows for a quick assessment and optimisation of future large stroke flexure hinges.
Original languageEnglish
Title of host publicationNew Trends in Mechanism and Machine Science
Subtitle of host publicationTheory and Industrial Applications
EditorsPhilippe Wenger, Paulo Flores
PublisherSpringer
Pages463-471
ISBN (Electronic)978-3-319-44156-6
ISBN (Print)978-3-319-44155-9
DOIs
Publication statusPublished - 2016

Publication series

NameMechanisms and Machine Science
PublisherSpringer
Number43

Fingerprint

Hinges
Conceptual design

Keywords

  • IR-101243
  • METIS-317842

Cite this

Grootens, M. E., Aarts, R. G. K. M., & Brouwer, D. M. (2016). Synthesis and Optimisation of Large Stroke Flexure Hinges. In P. Wenger, & P. Flores (Eds.), New Trends in Mechanism and Machine Science: Theory and Industrial Applications (pp. 463-471). (Mechanisms and Machine Science; No. 43). Springer. https://doi.org/10.1007/978-3-319-44156-6_47
Grootens, Martijn Edwin ; Aarts, Ronald G.K.M. ; Brouwer, Dannis Michel. / Synthesis and Optimisation of Large Stroke Flexure Hinges. New Trends in Mechanism and Machine Science: Theory and Industrial Applications. editor / Philippe Wenger ; Paulo Flores. Springer, 2016. pp. 463-471 (Mechanisms and Machine Science; 43).
@inbook{5ce73d1c7c1647b3adb45d2e755f10d9,
title = "Synthesis and Optimisation of Large Stroke Flexure Hinges",
abstract = "Flexure hinges are advantageous for use in high-precision applications because of their lack of hysteresis, friction and backlash. However, their range of motion is limited due to increasing stresses and a decreasing support stiffness at large strokes. Currently available hinges are typically designed for strokes of up to 10 ∘ and only a small number of hinges achieve a stroke of 40 ∘ . In this paper we present hinge concepts with a stroke up to 90 ∘ . On the one hand, the conceptual design of such hinges is addressed and, on the other hand, a method to optimise the design of such hinges is presented. The hinge performance is measured by evaluating the natural frequency of the second relevant eigenmode of the hinge with a specific load. For best performance the minimal value for this frequency throughout the full operating range is maximised. Analysing known hinge concepts in view of this criterion gives insight in the strengths and weaknesses of these hinges. This knowledge helps to improve the hinge layout. Also the possibility of stacking multiple hinges is considered. To find the optimal geometric parameters of a given design, a numerical optimisation routine is formulated and implemented, making use of the tools present in the ANSYS finite element program. Two types of conceptual hinges are synthesised and optimised for a range of ±45 ∘. Their behaviour is studied and compared to a commonly used three flexure cross hinge that is also optimised for this large stroke. A significant performance gain is found for the new hinge concepts. The paper shows that it is possible to design flexure hinges for large strokes of up to 90 ∘. And, more importantly, a method for analysing their performance and optimizing their geometry has been established. The method allows for a quick assessment and optimisation of future large stroke flexure hinges.",
keywords = "IR-101243, METIS-317842",
author = "Grootens, {Martijn Edwin} and Aarts, {Ronald G.K.M.} and Brouwer, {Dannis Michel}",
year = "2016",
doi = "10.1007/978-3-319-44156-6_47",
language = "English",
isbn = "978-3-319-44155-9",
series = "Mechanisms and Machine Science",
publisher = "Springer",
number = "43",
pages = "463--471",
editor = "Philippe Wenger and Paulo Flores",
booktitle = "New Trends in Mechanism and Machine Science",

}

Grootens, ME, Aarts, RGKM & Brouwer, DM 2016, Synthesis and Optimisation of Large Stroke Flexure Hinges. in P Wenger & P Flores (eds), New Trends in Mechanism and Machine Science: Theory and Industrial Applications. Mechanisms and Machine Science, no. 43, Springer, pp. 463-471. https://doi.org/10.1007/978-3-319-44156-6_47

Synthesis and Optimisation of Large Stroke Flexure Hinges. / Grootens, Martijn Edwin; Aarts, Ronald G.K.M.; Brouwer, Dannis Michel.

New Trends in Mechanism and Machine Science: Theory and Industrial Applications. ed. / Philippe Wenger; Paulo Flores. Springer, 2016. p. 463-471 (Mechanisms and Machine Science; No. 43).

Research output: Chapter in Book/Report/Conference proceedingChapterAcademicpeer-review

TY - CHAP

T1 - Synthesis and Optimisation of Large Stroke Flexure Hinges

AU - Grootens, Martijn Edwin

AU - Aarts, Ronald G.K.M.

AU - Brouwer, Dannis Michel

PY - 2016

Y1 - 2016

N2 - Flexure hinges are advantageous for use in high-precision applications because of their lack of hysteresis, friction and backlash. However, their range of motion is limited due to increasing stresses and a decreasing support stiffness at large strokes. Currently available hinges are typically designed for strokes of up to 10 ∘ and only a small number of hinges achieve a stroke of 40 ∘ . In this paper we present hinge concepts with a stroke up to 90 ∘ . On the one hand, the conceptual design of such hinges is addressed and, on the other hand, a method to optimise the design of such hinges is presented. The hinge performance is measured by evaluating the natural frequency of the second relevant eigenmode of the hinge with a specific load. For best performance the minimal value for this frequency throughout the full operating range is maximised. Analysing known hinge concepts in view of this criterion gives insight in the strengths and weaknesses of these hinges. This knowledge helps to improve the hinge layout. Also the possibility of stacking multiple hinges is considered. To find the optimal geometric parameters of a given design, a numerical optimisation routine is formulated and implemented, making use of the tools present in the ANSYS finite element program. Two types of conceptual hinges are synthesised and optimised for a range of ±45 ∘. Their behaviour is studied and compared to a commonly used three flexure cross hinge that is also optimised for this large stroke. A significant performance gain is found for the new hinge concepts. The paper shows that it is possible to design flexure hinges for large strokes of up to 90 ∘. And, more importantly, a method for analysing their performance and optimizing their geometry has been established. The method allows for a quick assessment and optimisation of future large stroke flexure hinges.

AB - Flexure hinges are advantageous for use in high-precision applications because of their lack of hysteresis, friction and backlash. However, their range of motion is limited due to increasing stresses and a decreasing support stiffness at large strokes. Currently available hinges are typically designed for strokes of up to 10 ∘ and only a small number of hinges achieve a stroke of 40 ∘ . In this paper we present hinge concepts with a stroke up to 90 ∘ . On the one hand, the conceptual design of such hinges is addressed and, on the other hand, a method to optimise the design of such hinges is presented. The hinge performance is measured by evaluating the natural frequency of the second relevant eigenmode of the hinge with a specific load. For best performance the minimal value for this frequency throughout the full operating range is maximised. Analysing known hinge concepts in view of this criterion gives insight in the strengths and weaknesses of these hinges. This knowledge helps to improve the hinge layout. Also the possibility of stacking multiple hinges is considered. To find the optimal geometric parameters of a given design, a numerical optimisation routine is formulated and implemented, making use of the tools present in the ANSYS finite element program. Two types of conceptual hinges are synthesised and optimised for a range of ±45 ∘. Their behaviour is studied and compared to a commonly used three flexure cross hinge that is also optimised for this large stroke. A significant performance gain is found for the new hinge concepts. The paper shows that it is possible to design flexure hinges for large strokes of up to 90 ∘. And, more importantly, a method for analysing their performance and optimizing their geometry has been established. The method allows for a quick assessment and optimisation of future large stroke flexure hinges.

KW - IR-101243

KW - METIS-317842

U2 - 10.1007/978-3-319-44156-6_47

DO - 10.1007/978-3-319-44156-6_47

M3 - Chapter

SN - 978-3-319-44155-9

T3 - Mechanisms and Machine Science

SP - 463

EP - 471

BT - New Trends in Mechanism and Machine Science

A2 - Wenger, Philippe

A2 - Flores, Paulo

PB - Springer

ER -

Grootens ME, Aarts RGKM, Brouwer DM. Synthesis and Optimisation of Large Stroke Flexure Hinges. In Wenger P, Flores P, editors, New Trends in Mechanism and Machine Science: Theory and Industrial Applications. Springer. 2016. p. 463-471. (Mechanisms and Machine Science; 43). https://doi.org/10.1007/978-3-319-44156-6_47