Synthesis, characterization, and imaging of radiopaque bismuth beads for image-guided transarterial embolization

Ayele H. Negussie*, Quirina M.B. de Ruiter, Hugh Britton, Danielle R. Donahue, Quentin Boffi, Young Seung Kim, William F. Pritchard, Chrit Moonen, Gert Storm, Andrew L. Lewis, Bradford J. Wood

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

10 Citations (Scopus)
60 Downloads (Pure)


Current therapy for hypervascular cancers, e.g., hepatocellular carcinoma, includes occlusion of the tumor blood supply by arterial infusion of embolic microspheres (beads) suspended in iodine-based contrast under fluoroscopic guidance. Available radiopaque, imageable beads use iodine as the radiopacifier and cannot be differentiated from contrast. This study aimed to synthesize and characterize imageable beads using bismuth as the radiopacifier that could be distinguished from iodine contrast based upon the difference in the binding energy of k-shell electrons (k-edge). Radiodense bismuth beads were successfully synthesized some with uniform bismuth distribution across the beads. The beads were spherical and could be infused through clinical microcatheters. The bismuth beads could be imaged with clinical dual-energy computed tomography (CT), where iodine-based contrast could be distinguished from the microspheres. The ability to separate iodine from bismuth may enhance the diagnostic information acquired on follow-up CT, identifying the distribution of the embolic beads separately from the contrast. Furthermore, with sequential use of iodine- and bismuth-based beads, the two radiopaque beads could be spatially distinguished on imaging, which may enable the development of dual drug delivery and dual tracking.

Original languageEnglish
Article number533
JournalScientific reports
Issue number1
Publication statusPublished - 12 Jan 2021


Dive into the research topics of 'Synthesis, characterization, and imaging of radiopaque bismuth beads for image-guided transarterial embolization'. Together they form a unique fingerprint.

Cite this