T1-weighted MR image contrast around a cryoablation iceball: A phantom study and initial comparison with in vivo findings

C .G. Overduin, J.G.R Bomers, S.F.M. Jenniskens, Bernard ten Haken, F. de Lange, Johannes Jacobus Fütterer, T.W.J. Scheenen

Research output: Contribution to journalArticleAcademicpeer-review

11 Citations (Scopus)

Abstract

Purpose: To correlate T1-weighted (T1w) magnetic resonance (MR) image contrast around a cryoablation iceball with temperature in a phantom study and to compare this to its in vivo appearance during MR-guided focal cryoablation of prostate cancer. Methods: A MR-compatible cryoneedle was inserted into identical gel phantoms (n = 3) on a 1.5 T MR system. Two fiber-optic temperature sensors were placed parallel to the needle. A fast 3D T1w gradient echo (GRE) sequence (TR/TE/FA = 4.81/1.98/6°) was used to monitor iceball progression. Normalized signal intensity (SI) was correlated with temperature. The same T1w sequence was used during MR-guided prostate cryoablation in ten consecutive patients at the authors’ institution. In vivo findings were quantitatively compared to the phantom data. Results: In the phantom study, the cryoablation iceball appeared in the T1w MR images as a sharply delineated signal void. A 2.2 ± 0.2 mm wide hyperintense rim directly surrounded the iceball at cooled but nonfreezing temperatures (<20 °C) in the gel. Normalized SI was maximum at 8.4 ± 2.4 °C, showing a 35.6%–43.0% (mean 40.5%) increase with respect to baseline before cooling. In the clinical procedures, the same image contrast was observed in vivo in all patients. In vivo, width of the hyperintense rim was 1.6 ± 0.6 mm. Normalized SI increases with respect to nontreated prostate ranged 28.4%–55.6% (mean 36.8%). On quantitative analysis, normalized SI changes along a linear region of interest from surrounding tissue onto the iceball center were similar between the patients and phantom setting (root mean square difference 0.06). Conclusions: The hyperintense rim around the iceball in fast T1w GRE images corresponded to cooled but nonfreezing temperatures (<20 °C) proximal to the frozen zone. The same image contrast was observed both in a phantom study as well as in vivo in the human prostate during cryotherapy. Potentially, monitoring of this rim could be useful in order to maintain a safe margin from at-risk tissues during MR-guided prostate cryoablation procedures.
Original languageEnglish
Article number112301
Pages (from-to)-
JournalMedical physics
Volume41
Issue number11
DOIs
Publication statusPublished - 2014

Fingerprint

Cryosurgery
Magnetic Resonance Spectroscopy
Prostate
Temperature
Gels
Cryotherapy
Needles
Prostatic Neoplasms

Keywords

  • METIS-309502
  • IR-94645

Cite this

Overduin, C .G. ; Bomers, J.G.R ; Jenniskens, S.F.M. ; ten Haken, Bernard ; de Lange, F. ; Fütterer, Johannes Jacobus ; Scheenen, T.W.J. / T1-weighted MR image contrast around a cryoablation iceball: A phantom study and initial comparison with in vivo findings. In: Medical physics. 2014 ; Vol. 41, No. 11. pp. -.
@article{98acbfc17a91465685c6276b34539ff3,
title = "T1-weighted MR image contrast around a cryoablation iceball: A phantom study and initial comparison with in vivo findings",
abstract = "Purpose: To correlate T1-weighted (T1w) magnetic resonance (MR) image contrast around a cryoablation iceball with temperature in a phantom study and to compare this to its in vivo appearance during MR-guided focal cryoablation of prostate cancer. Methods: A MR-compatible cryoneedle was inserted into identical gel phantoms (n = 3) on a 1.5 T MR system. Two fiber-optic temperature sensors were placed parallel to the needle. A fast 3D T1w gradient echo (GRE) sequence (TR/TE/FA = 4.81/1.98/6°) was used to monitor iceball progression. Normalized signal intensity (SI) was correlated with temperature. The same T1w sequence was used during MR-guided prostate cryoablation in ten consecutive patients at the authors’ institution. In vivo findings were quantitatively compared to the phantom data. Results: In the phantom study, the cryoablation iceball appeared in the T1w MR images as a sharply delineated signal void. A 2.2 ± 0.2 mm wide hyperintense rim directly surrounded the iceball at cooled but nonfreezing temperatures (<20 °C) in the gel. Normalized SI was maximum at 8.4 ± 2.4 °C, showing a 35.6{\%}–43.0{\%} (mean 40.5{\%}) increase with respect to baseline before cooling. In the clinical procedures, the same image contrast was observed in vivo in all patients. In vivo, width of the hyperintense rim was 1.6 ± 0.6 mm. Normalized SI increases with respect to nontreated prostate ranged 28.4{\%}–55.6{\%} (mean 36.8{\%}). On quantitative analysis, normalized SI changes along a linear region of interest from surrounding tissue onto the iceball center were similar between the patients and phantom setting (root mean square difference 0.06). Conclusions: The hyperintense rim around the iceball in fast T1w GRE images corresponded to cooled but nonfreezing temperatures (<20 °C) proximal to the frozen zone. The same image contrast was observed both in a phantom study as well as in vivo in the human prostate during cryotherapy. Potentially, monitoring of this rim could be useful in order to maintain a safe margin from at-risk tissues during MR-guided prostate cryoablation procedures.",
keywords = "METIS-309502, IR-94645",
author = "Overduin, {C .G.} and J.G.R Bomers and S.F.M. Jenniskens and {ten Haken}, Bernard and {de Lange}, F. and F{\"u}tterer, {Johannes Jacobus} and T.W.J. Scheenen",
year = "2014",
doi = "10.1118/1.4896824",
language = "English",
volume = "41",
pages = "--",
journal = "Medical physics",
issn = "0094-2405",
publisher = "AAPM - American Association of Physicists in Medicine",
number = "11",

}

T1-weighted MR image contrast around a cryoablation iceball: A phantom study and initial comparison with in vivo findings. / Overduin, C .G.; Bomers, J.G.R; Jenniskens, S.F.M.; ten Haken, Bernard; de Lange, F.; Fütterer, Johannes Jacobus; Scheenen, T.W.J.

In: Medical physics, Vol. 41, No. 11, 112301, 2014, p. -.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - T1-weighted MR image contrast around a cryoablation iceball: A phantom study and initial comparison with in vivo findings

AU - Overduin, C .G.

AU - Bomers, J.G.R

AU - Jenniskens, S.F.M.

AU - ten Haken, Bernard

AU - de Lange, F.

AU - Fütterer, Johannes Jacobus

AU - Scheenen, T.W.J.

PY - 2014

Y1 - 2014

N2 - Purpose: To correlate T1-weighted (T1w) magnetic resonance (MR) image contrast around a cryoablation iceball with temperature in a phantom study and to compare this to its in vivo appearance during MR-guided focal cryoablation of prostate cancer. Methods: A MR-compatible cryoneedle was inserted into identical gel phantoms (n = 3) on a 1.5 T MR system. Two fiber-optic temperature sensors were placed parallel to the needle. A fast 3D T1w gradient echo (GRE) sequence (TR/TE/FA = 4.81/1.98/6°) was used to monitor iceball progression. Normalized signal intensity (SI) was correlated with temperature. The same T1w sequence was used during MR-guided prostate cryoablation in ten consecutive patients at the authors’ institution. In vivo findings were quantitatively compared to the phantom data. Results: In the phantom study, the cryoablation iceball appeared in the T1w MR images as a sharply delineated signal void. A 2.2 ± 0.2 mm wide hyperintense rim directly surrounded the iceball at cooled but nonfreezing temperatures (<20 °C) in the gel. Normalized SI was maximum at 8.4 ± 2.4 °C, showing a 35.6%–43.0% (mean 40.5%) increase with respect to baseline before cooling. In the clinical procedures, the same image contrast was observed in vivo in all patients. In vivo, width of the hyperintense rim was 1.6 ± 0.6 mm. Normalized SI increases with respect to nontreated prostate ranged 28.4%–55.6% (mean 36.8%). On quantitative analysis, normalized SI changes along a linear region of interest from surrounding tissue onto the iceball center were similar between the patients and phantom setting (root mean square difference 0.06). Conclusions: The hyperintense rim around the iceball in fast T1w GRE images corresponded to cooled but nonfreezing temperatures (<20 °C) proximal to the frozen zone. The same image contrast was observed both in a phantom study as well as in vivo in the human prostate during cryotherapy. Potentially, monitoring of this rim could be useful in order to maintain a safe margin from at-risk tissues during MR-guided prostate cryoablation procedures.

AB - Purpose: To correlate T1-weighted (T1w) magnetic resonance (MR) image contrast around a cryoablation iceball with temperature in a phantom study and to compare this to its in vivo appearance during MR-guided focal cryoablation of prostate cancer. Methods: A MR-compatible cryoneedle was inserted into identical gel phantoms (n = 3) on a 1.5 T MR system. Two fiber-optic temperature sensors were placed parallel to the needle. A fast 3D T1w gradient echo (GRE) sequence (TR/TE/FA = 4.81/1.98/6°) was used to monitor iceball progression. Normalized signal intensity (SI) was correlated with temperature. The same T1w sequence was used during MR-guided prostate cryoablation in ten consecutive patients at the authors’ institution. In vivo findings were quantitatively compared to the phantom data. Results: In the phantom study, the cryoablation iceball appeared in the T1w MR images as a sharply delineated signal void. A 2.2 ± 0.2 mm wide hyperintense rim directly surrounded the iceball at cooled but nonfreezing temperatures (<20 °C) in the gel. Normalized SI was maximum at 8.4 ± 2.4 °C, showing a 35.6%–43.0% (mean 40.5%) increase with respect to baseline before cooling. In the clinical procedures, the same image contrast was observed in vivo in all patients. In vivo, width of the hyperintense rim was 1.6 ± 0.6 mm. Normalized SI increases with respect to nontreated prostate ranged 28.4%–55.6% (mean 36.8%). On quantitative analysis, normalized SI changes along a linear region of interest from surrounding tissue onto the iceball center were similar between the patients and phantom setting (root mean square difference 0.06). Conclusions: The hyperintense rim around the iceball in fast T1w GRE images corresponded to cooled but nonfreezing temperatures (<20 °C) proximal to the frozen zone. The same image contrast was observed both in a phantom study as well as in vivo in the human prostate during cryotherapy. Potentially, monitoring of this rim could be useful in order to maintain a safe margin from at-risk tissues during MR-guided prostate cryoablation procedures.

KW - METIS-309502

KW - IR-94645

U2 - 10.1118/1.4896824

DO - 10.1118/1.4896824

M3 - Article

VL - 41

SP - -

JO - Medical physics

JF - Medical physics

SN - 0094-2405

IS - 11

M1 - 112301

ER -