Tail asymptotics for the delay in a Brownian fork-join queue

Dennis Schol*, Maria Vlasiou, Bert Zwart

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)
56 Downloads (Pure)

Abstract

We study the tail behavior of maxi≤Nsups>0Wi(s)+WA(s)−βs as N→∞, with (Wi,i≤N) i.i.d. Brownian motions and WA an independent Brownian motion. This random variable can be seen as the maximum of N mutually dependent Brownian queues, which in turn can be interpreted as the backlog in a Brownian fork-join queue. In previous work, we have shown that this random variable centers around [Formula presented]logN. Here, we analyze the rare event that this random variable reaches the value ([Formula presented]+a)logN, with a>0. It turns out that its probability behaves roughly as a power law with N, where the exponent depends on a. However, there are three regimes, around a critical point a; namely, 0<a<a, a=a, and a>a. The latter regime exhibits a form of asymptotic independence, while the first regime reveals highly irregular behavior with a clear dependence structure among the N suprema, with a nontrivial transition at a=a.

Original languageEnglish
Pages (from-to)99-138
Number of pages40
JournalStochastic processes and their applications
Volume164
Early online date3 Jul 2023
DOIs
Publication statusPublished - Oct 2023

Keywords

  • Brownian queues
  • Extreme-value theory
  • Fork-join queues
  • Tail asymptotics

Fingerprint

Dive into the research topics of 'Tail asymptotics for the delay in a Brownian fork-join queue'. Together they form a unique fingerprint.

Cite this