Tailoring the Implementation of New Biomarkers Based on Their Added Predictive Value in Subgroups of Individuals

A. van Giessen, K.G.M. Moons, G.A. de Wit, W.M.M. Verschuren, J.M.A. Boer, Hendrik Koffijberg

Research output: Contribution to journalArticleAcademic

4 Citations (Scopus)
65 Downloads (Pure)

Abstract

Background: The value of new biomarkers or imaging tests, when added to a prediction model, is currently evaluated using reclassification measures, such as the net reclassification improvement (NRI). However, these measures only provide an estimate of improved reclassification at population level. We present a straightforward approach to characterize subgroups of reclassified individuals in order to tailor implementation of a new prediction model to individuals expected to benefit from it.
Methods: In a large Dutch population cohort (n = 21,992) we classified individuals to low (<5%) and high (≥5%) fatal cardiovascular disease risk by the Framingham risk score (FRS) and reclassified them based on the systematic coronary risk evaluation (SCORE). Subsequently, we characterized the reclassified individuals and, in case of heterogeneity, applied cluster analysis to identify and characterize subgroups. These characterizations were used to select individuals expected to benefit from implementation of SCORE.
Results: Reclassification after applying SCORE in all individuals resulted in an NRI of 5.00% (95% CI [-0.53%; 11.50%]) within the events, 0.06% (95% CI [-0.08%; 0.22%]) within the nonevents, and a total NRI of 0.051 (95% CI [-0.004; 0.116]). Among the correctly downward reclassified individuals cluster analysis identified three subgroups. Using the characterizations of the typically correctly reclassified individuals, implementing SCORE only in individuals expected to benefit (n = 2,707,12.3%) improved the NRI to 5.32% (95% CI [-0.13%; 12.06%]) within the events, 0.24% (95% CI [0.10%; 0.36%]) within the nonevents, and a total NRI of 0.055 (95% CI [0.001; 0.123]). Overall, the risk levels for individuals reclassified by tailored implementation of SCORE were more accurate.
Discussion: In our empirical example the presented approach successfully characterized subgroups of reclassified individuals that could be used to improve reclassification and reduce implementation burden. In particular when newly added biomarkers or imaging tests are costly or burdensome such a tailored implementation strategy may save resources and improve (cost-)effectiveness.
Original languageEnglish
Article numbere0114020
JournalPLoS ONE
Volume10
Issue number1
DOIs
Publication statusPublished - 2015

Fingerprint Dive into the research topics of 'Tailoring the Implementation of New Biomarkers Based on Their Added Predictive Value in Subgroups of Individuals'. Together they form a unique fingerprint.

Cite this