TY - JOUR
T1 - Tandem Si Micropillar Array Photocathodes with Conformal Copper Oxide and a Protection Layer by Pulsed Laser Deposition
AU - Kunturu, Pramod Patil
AU - Zachariadis, Christos
AU - Witczak, Lukasz
AU - Nguyen, Minh D.
AU - Rijnders, Guus
AU - Huskens, Jurriaan
PY - 2019/11/6
Y1 - 2019/11/6
N2 - This work demonstrates the influence of high-quality protection layers on Si-Cu2O micropillar arrays created by pulsed laser deposition (PLD), with the goal to overcome photodegradation and achieve long-term operation during photoelectrochemical (PEC) water splitting. Sequentially, we assessed planar and micropillar device designs with various design parameters and their influence on PEC hydrogen evolution reaction. On the planar device substrates, a Cu2O film thickness of 600 nm and a Cu2O/CuO heterojunction layer with a 5:1 thickness ratio between Cu2O to CuO were found to be optimal. The planar Si/Cu2O/CuO heterostructure showed a higher PV performance (Jsc = 20 mA/cm2) as compared to the planar Si/Cu2O device, but micropillar devices did not show this improvement. Multifunctional overlayers of ZnO (25 nm) and TiO2 (100 nm) were employed by PLD on Si/Cu2O planar and micropillar arrays to provide a hole-selective passivation layer that acts against photocorrosion. A micropillar Si/ITO-Au/Cu2O/ZnO/TiO2/Pt stack was compared to a planar device. Under optimized conditions, the Si/Cu2O photocathode with Pt as a HER catalyst displayed a photocurrent of 7.5 mA cm-2 at 0 V vs RHE and an onset potential of 0.85 V vs RHE, with a stable operation for 75 h.
AB - This work demonstrates the influence of high-quality protection layers on Si-Cu2O micropillar arrays created by pulsed laser deposition (PLD), with the goal to overcome photodegradation and achieve long-term operation during photoelectrochemical (PEC) water splitting. Sequentially, we assessed planar and micropillar device designs with various design parameters and their influence on PEC hydrogen evolution reaction. On the planar device substrates, a Cu2O film thickness of 600 nm and a Cu2O/CuO heterojunction layer with a 5:1 thickness ratio between Cu2O to CuO were found to be optimal. The planar Si/Cu2O/CuO heterostructure showed a higher PV performance (Jsc = 20 mA/cm2) as compared to the planar Si/Cu2O device, but micropillar devices did not show this improvement. Multifunctional overlayers of ZnO (25 nm) and TiO2 (100 nm) were employed by PLD on Si/Cu2O planar and micropillar arrays to provide a hole-selective passivation layer that acts against photocorrosion. A micropillar Si/ITO-Au/Cu2O/ZnO/TiO2/Pt stack was compared to a planar device. Under optimized conditions, the Si/Cu2O photocathode with Pt as a HER catalyst displayed a photocurrent of 7.5 mA cm-2 at 0 V vs RHE and an onset potential of 0.85 V vs RHE, with a stable operation for 75 h.
KW - copper oxide
KW - hydrogen evolution reaction
KW - pulse laser deposition
KW - Si micropillar array
KW - tandem photocathode
U2 - 10.1021/acsami.9b14408
DO - 10.1021/acsami.9b14408
M3 - Article
C2 - 31618576
AN - SCOPUS:85074279161
SN - 1944-8244
VL - 11
SP - 41402
EP - 41414
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 44
ER -