Tape-Head with Sub-Ambient Air Pressure Cavities

Johan B C Engelen*, V. Prasad Jonnalagadda, Simeon Furrer, Hugo E. Rothuizen, Mark A. Lantz

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review


A new tape-head design with surface cavities is presented as an alternative to the conventional skiving-edge flat-profile head design. The new head design is referred to as the vacuum head, inspired by the sub-ambient air pressure that develops in the surface cavities during operation. Two prototype head modules, a writer and a reader, were fabricated by modifying commercial tape-head modules and are compared with unmodified reference modules. A finite-element model is presented to simulate the head-tape interface and aid in the surface topography design of the vacuum head prototypes. The modeling results correspond qualitatively with experimental data from interferometer measurements of the shape of tape as it passes over the vacuum heads. The vacuum heads are operated successfully in data read/write experiments, with a slightly reduced signal-to-noise ratio performance compared with the reference heads. An indirect measure of head friction is obtained from tape velocity spectra that show a much reduced friction-induced compressional wave tape resonance for the vacuum modules compared with that for the reference modules. The results presented in this paper show that the new vacuum head design is a promising candidate for future heads with low friction, enabling the use of very smooth media for reduced magnetic spacing and increased areal densities.

Original languageEnglish
Article number7506243
JournalIEEE transactions on magnetics
Issue number11
Publication statusPublished - 1 Nov 2016
Externally publishedYes


  • Air-bearing interface
  • head-tape interface
  • magnetic data recording head
  • tape recording

Fingerprint Dive into the research topics of 'Tape-Head with Sub-Ambient Air Pressure Cavities'. Together they form a unique fingerprint.

Cite this