TY - JOUR
T1 - Technical Note
T2 - Cortical thickness and density estimation from clinical CT using a prior thickness-density relationship
AU - Humbert, Ludovic
AU - Hazrati Marangalou, Javad
AU - del Río Barquero, Luis Miguel
AU - van Lenthe, G. Harry
AU - van Rietbergen, Bert
N1 - Funding Information:
The research leading to these results has received funding from Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Ministerio de Economía y Competitividad (Reference No. RTC-2014-2740-1), Centro para el Desarrollo Tecnológico Industrial, Ministerio de Economía y Competitividad (Eurostars program, Project ID: 9140), and European Union (Osteoporotic Virtual Physiological Human Project, No. VPHOP FP7-ICT2008-223865). The work of Ludovic Humbert is supported by Programa Estatal de Promoción del Talento y su Empleabilidad-Torres Quevedo, Ministerio de Economía y Competitividad (Reference No. SPTQ1300X006124XV0).
Publisher Copyright:
© 2016 American Association of Physicists in Medicine.
PY - 2016/4
Y1 - 2016/4
N2 - Purpose: Cortical thickness and density are critical components in determining the strength of bony structures. Computed tomography (CT) is one possible modality for analyzing the cortex in 3D. In this paper, a model-based approach for measuring the cortical bone thickness and density from clinical CT images is proposed.Methods: Density variations across the cortex were modeled as a function of the cortical thickness and density, location of the cortex, density of surrounding tissues, and imaging blur. High resolution micro-CT data of cadaver proximal femurs were analyzed to determine a relationship between cortical thickness and density. This thickness-density relationship was used as prior information to be incorporated in the model to obtain accurate measurements of cortical thickness and density from clinical CT volumes. The method was validated using micro-CT scans of 23 cadaver proximal femurs. Simulated clinical CT images with different voxel sizes were generated from the micro-CT data. Cortical thickness and density were estimated from the simulated images using the proposed method and compared with measurements obtained using the micro-CT images to evaluate the effect of voxel size on the accuracy of the method. Then, 19 of the 23 specimens were imaged using a clinical CT scanner. Cortical thickness and density were estimated from the clinical CT images using the proposed method and compared with the micro-CT measurements. Finally, a case-control study including 20 patients with osteoporosis and 20 age-matched controls with normal bone density was performed to evaluate the proposed method in a clinical context.Results: Cortical thickness (density) estimation errors were 0.07 ± 0.19 mm (-18 ± 92 mg/cm3) using the simulated clinical CT volumes with the smallest voxel size (0.33 × 0.33 × 0.5 mm3), and 0.10 ± 0.24 mm (-10 ± 115 mg/cm3) using the volumes with the largest voxel size (1.0 × 1.0 × 3.0 mm3). A trend for the cortical thickness and density estimation errors to increase with voxel size was observed and was more pronounced for thin cortices. Using clinical CT data for 19 of the 23 samples, mean errors of 0.18 ± 0.24 mm for the cortical thickness and 15 ± 106 mg/cm3 for the density were found. The case-control study showed that osteoporotic patients had a thinner cortex and a lower cortical density, with average differences of -0.8 mm and -58.6 mg/cm3 at the proximal femur in comparison with age-matched controls (p-value < 0.001).Conclusions: This method might be a promising approach for the quantification of cortical bone thickness and density using clinical routine imaging techniques. Future work will concentrate on investigating how this approach can improve the estimation of mechanical strength of bony structures, the prevention of fracture, and the management of osteoporosis.
AB - Purpose: Cortical thickness and density are critical components in determining the strength of bony structures. Computed tomography (CT) is one possible modality for analyzing the cortex in 3D. In this paper, a model-based approach for measuring the cortical bone thickness and density from clinical CT images is proposed.Methods: Density variations across the cortex were modeled as a function of the cortical thickness and density, location of the cortex, density of surrounding tissues, and imaging blur. High resolution micro-CT data of cadaver proximal femurs were analyzed to determine a relationship between cortical thickness and density. This thickness-density relationship was used as prior information to be incorporated in the model to obtain accurate measurements of cortical thickness and density from clinical CT volumes. The method was validated using micro-CT scans of 23 cadaver proximal femurs. Simulated clinical CT images with different voxel sizes were generated from the micro-CT data. Cortical thickness and density were estimated from the simulated images using the proposed method and compared with measurements obtained using the micro-CT images to evaluate the effect of voxel size on the accuracy of the method. Then, 19 of the 23 specimens were imaged using a clinical CT scanner. Cortical thickness and density were estimated from the clinical CT images using the proposed method and compared with the micro-CT measurements. Finally, a case-control study including 20 patients with osteoporosis and 20 age-matched controls with normal bone density was performed to evaluate the proposed method in a clinical context.Results: Cortical thickness (density) estimation errors were 0.07 ± 0.19 mm (-18 ± 92 mg/cm3) using the simulated clinical CT volumes with the smallest voxel size (0.33 × 0.33 × 0.5 mm3), and 0.10 ± 0.24 mm (-10 ± 115 mg/cm3) using the volumes with the largest voxel size (1.0 × 1.0 × 3.0 mm3). A trend for the cortical thickness and density estimation errors to increase with voxel size was observed and was more pronounced for thin cortices. Using clinical CT data for 19 of the 23 samples, mean errors of 0.18 ± 0.24 mm for the cortical thickness and 15 ± 106 mg/cm3 for the density were found. The case-control study showed that osteoporotic patients had a thinner cortex and a lower cortical density, with average differences of -0.8 mm and -58.6 mg/cm3 at the proximal femur in comparison with age-matched controls (p-value < 0.001).Conclusions: This method might be a promising approach for the quantification of cortical bone thickness and density using clinical routine imaging techniques. Future work will concentrate on investigating how this approach can improve the estimation of mechanical strength of bony structures, the prevention of fracture, and the management of osteoporosis.
KW - n/a OA procedure
KW - Computed tomography
KW - Cortical thickness
KW - Hip fracture
KW - Osteoporosis
KW - Bone mineral density
UR - http://www.scopus.com/inward/record.url?scp=84962429387&partnerID=8YFLogxK
U2 - 10.1118/1.4944501
DO - 10.1118/1.4944501
M3 - Article
C2 - 27036590
SN - 0094-2405
VL - 43
SP - 1945
EP - 1954
JO - Medical physics
JF - Medical physics
IS - 4
ER -