Technical performance and energy intensity of the electrode-separator composite manufacturing process

J. Schmitt*, G. Posselt, F. Dietrich, S. Thiede, A. Raatz, C. Herrmann, K. Dröder

*Corresponding author for this work

Research output: Contribution to journalConference articleAcademicpeer-review

6 Citations (Scopus)
14 Downloads (Pure)


Energy storage is one of the key technological factors that determine the success of a sustainable future. Especially green mobility concepts for electric or hybrid electric vehicles highly depend upon storage technologies with high energy density and light-weight materials. At the same time, innovative production processes should be conceived that ensure energy and resource efficient manufacturing of these energy storage devices. This paper focuses on the technical as well as dynamic energetic performance analysis and evaluation of an innovative electrode-separator composite manufacturing process of lithium-ion batteries for automotive applications. The technical performance indicators such as battery capacity and the energy intensity of the manufacturing process are highly dependent upon process parameters, machine and product design. Hence, in-depth process knowledge must be acquired to understand interdependencies between all system components. Thus, the manufacturing process is analysed in terms of its dynamics, and correlations between process parameters, process energy demand and final product properties are assessed. The resulting knowledge is important for the subsequent design of large-scale products and processes involved design, as well as for characterisation of the manufacturing process for life cycle inventory databases or life cycle costing calculations.

Original languageEnglish
Pages (from-to)269-274
Number of pages6
JournalProcedia CIRP
Publication statusPublished - 1 Jan 2015
Externally publishedYes
Event22nd CIRP Conference on Life Cycle Engineering, LCE 2015 - Sidney, Australia
Duration: 7 Apr 20159 Apr 2015
Conference number: 22


  • Battery production
  • Energy intensity
  • Energy monitoring


Dive into the research topics of 'Technical performance and energy intensity of the electrode-separator composite manufacturing process'. Together they form a unique fingerprint.

Cite this