Abstract
Parkinson's disease (PD) is neurodegenerative movement disorder and a treatment method called deep brain stimulation (DBS) may considerably reduce the patient’s motor symptoms. The clinical procedure involves the implantation of a DBS lead, consisting of multiple electrode contacts, through which continuous high frequency (around 130 Hz) electric pulses are delivered in the brain. In this thesis, I presented the research which had the goal to improve current DBS technology, focusing on bringing the conventional DBS system a step closer to adaptive DBS, a personalized DBS therapy. The chapters in this thesis can be seen as individual building blocks for such an adaptive DBS system. After the general introduction, the first two chapters, two novel DBS lead designs are studied in a computational model. The model showed that both studied leads were able to exploit the novel distribution of the electrode contacts to shape and steer the stimulation field to activate more neurons in the chosen target compared to the conventional lead, and to counteract lead displacement. In the fourth chapter, an inverse current source density (CSD) method is applied on local field potentials (LFP) measured in a rat model. The pattern of CSD sources can act as a landmark within the STN to locate the potential stimulation target. The fifth and final chapter described the last building block of the DBS system. We introduced an inertial sensors and force sensor based measurement system, which can record hand kinematics and joint stiffness of PD patients. A system which can act as a feedback signal in an adaptive DBS system.
Original language | English |
---|---|
Qualification | Doctor of Philosophy |
Awarding Institution |
|
Supervisors/Advisors |
|
Award date | 25 Jun 2021 |
Place of Publication | Enschede |
Publisher | |
Print ISBNs | 978-90-365-5188-5 |
DOIs | |
Publication status | Published - 25 Jun 2021 |