TY - JOUR
T1 - Temperature dependence of the energy barrier and switching field of sub-micron magnetic islands with perpendicular anisotropy
AU - de Vries, Jeroen
AU - Bolhuis, Thijs
AU - Abelmann, Leon
PY - 2017/9/28
Y1 - 2017/9/28
N2 - Using the highly sensitive anomalous Hall effect we have been able to measure the reversal of a single magnetic island, of diameter 220 nm, in an array consisting of more than 80 of those islands. By repeatedly traversing the hysteresis loop, we measured the thermally induced fluctuation of the switching field of the islands at the lower and higher ends of the switching field distribution. Based on a novel easy-to-use model, we determined the switching field in the absence of thermal activation, and the energy barrier in the absence of an external field from these fluctuations. By measuring the reversal of individual dots in the array as a function of temperature, we extrapolated the switching field and energy barrier down to 0 K. The extrapolated values are not identical to those obtained from the fluctation of the switching field at room temperature, because the properties of the magnetic material are temperature dependent. As a result, extrapolating from temperature dependent measurements overestimates the energy barrier by more than a factor of two. To determine fundamental parameters of the energy barrier between magnetisation states, measuring the fluctuation of the reversal field at the temperature of application is therefore to be preferred. This is of primary importance to applications in data storagea and magnetic logic. For instance in fast switching, where the switching field in the absence of thermal activation plays a major role, or in long term data stability, which is determined by the energy barrier in the absence of an external field.
AB - Using the highly sensitive anomalous Hall effect we have been able to measure the reversal of a single magnetic island, of diameter 220 nm, in an array consisting of more than 80 of those islands. By repeatedly traversing the hysteresis loop, we measured the thermally induced fluctuation of the switching field of the islands at the lower and higher ends of the switching field distribution. Based on a novel easy-to-use model, we determined the switching field in the absence of thermal activation, and the energy barrier in the absence of an external field from these fluctuations. By measuring the reversal of individual dots in the array as a function of temperature, we extrapolated the switching field and energy barrier down to 0 K. The extrapolated values are not identical to those obtained from the fluctation of the switching field at room temperature, because the properties of the magnetic material are temperature dependent. As a result, extrapolating from temperature dependent measurements overestimates the energy barrier by more than a factor of two. To determine fundamental parameters of the energy barrier between magnetisation states, measuring the fluctuation of the reversal field at the temperature of application is therefore to be preferred. This is of primary importance to applications in data storagea and magnetic logic. For instance in fast switching, where the switching field in the absence of thermal activation plays a major role, or in long term data stability, which is determined by the energy barrier in the absence of an external field.
KW - Perpendicular anisotropy
KW - Sub-micron magnetic elements
KW - Thermally induced magnetic reversal
U2 - 10.1088/1367-2630/aa8082
DO - 10.1088/1367-2630/aa8082
M3 - Article
AN - SCOPUS:85031097116
SN - 1367-2630
VL - 19
JO - New journal of physics
JF - New journal of physics
IS - 9
M1 - 093019
ER -