Textural stability of titania-alumina composite membranes

Krishnankutty-Nair P. Kumar, Klaas Keizer, Anthonie J. Burggraaf

Research output: Contribution to journalArticleAcademicpeer-review

57 Citations (Scopus)
102 Downloads (Pure)


Textural evolution (porosity reduction, pore and crystallite growth) in titania–alumina composite membranes has been studied using thermal analysis, X-ray diffraction, field emission scanning electron microscopy and N2 physisorption techniques. The presence of alumina in the membranes improved the thermal stability of the porous texture by retarding the anatase-to-rutile phase transformation and grain growth of the anatase phase. Pure unsupported titania membranes lose their porosity completely after calcination at 600 °C for 8 h, whereas the titania–50 wt.% alumina composite membranes retained a porosity of ca. 40% even after calcination for 30 h at 800 °C. The anatase-to-rutile phase transformation temperatures for pure unsupported titania and the titania phase of the unsupported titania–alumina composite membranes (50 wt.% alumina) were found to be 580 and 960 °C, respectively, as observed from the DSC data.From XRD results it was found that pure unsupported titania and the unsupported titania–alumina (50 wt.% alumina) composite membranes transformed to more than 95% of rutile after heat treatment for 8 h at 600 and 900 °C, respectively. The anatase to rutile phase transformation kinetics were studied using DSC data and applying a non-isothermal form of the Avrami equation.
Original languageEnglish
Pages (from-to)917-922
Number of pages6
JournalJournal of materials chemistry
Issue number9
Publication statusPublished - 1993


  • Ceramic membrane
  • Titania
  • Alumina
  • Composite
  • Textural stability


Dive into the research topics of 'Textural stability of titania-alumina composite membranes'. Together they form a unique fingerprint.

Cite this