Abstract
Let $A$ be the generator of a uniformly bounded $C_0$-semigroup on the Banach space $X$. We present sufficient conditions on the resolvent $(A-\lambda I)^{-1},$ $Re(\lambda)>0,$ under which the Cayley transform $V=(A+I)(A-I)^{-1}$ is a power-bounded operator, i.e., $\sup_{n\in N}\,\|V^n\|\,<\infty.$
Original language | Undefined |
---|---|
Article number | 10.1007/s00233-006-0648-8 |
Pages (from-to) | 140-148 |
Number of pages | 9 |
Journal | Semigroup forum |
Volume | 74 |
Issue number | 1/1 |
DOIs | |
Publication status | Published - Feb 2007 |
Keywords
- MSC-93C25
- IR-63698
- EWI-8191
- METIS-241701