Abstract
Successful osseointegration of press-fit implants depends on the initial stability, often measured by the micromotions between the implant and bone. A good primary stability can be achieved by optimizing the compressive and frictional forces acting at the bone-implant interface. The frictional properties of the implant-bone interface, which depend on the roughness and porosity of the implant surface coating, can affect the primary stability. Several reversible (elastic) and non-reversible (permanent) deformation processes take place during frictional loading of the implant-bone interface. In case of a rough coating, the asperities of the implant surface are compressed into the bone leading to mechanical interlocking. To optimize fixation of orthopaedic implants it is crucial to understand these complex interactions between coating and bone. The objective of the current study was to gain more insight into the reversible and non-reversible processes acting at the implant-bone interface. Tribological experiments were performed with two types of porous coatings against human cadaveric bone. The results indicated that the coefficient of friction depended on the coating roughness (0.86, 0.95, and 0.45 for an Ra roughness of 41.2, 53.0, and a polished surface, respectively). Larger elastic and permanent displacements were found for the rougher coating, resulting in a lower interface stiffness. The experiments furthermore revealed that relative displacements of up to 35 µm can occur without sliding at the interface. These findings have implications for micromotion thresholds that currently are assumed for osseointegration, and suggest that bone ingrowth actually occurs in the absence of relative sliding at the implant-bone interface.
Original language | English |
---|---|
Article number | 111949 |
Number of pages | 7 |
Journal | Journal of biomechanics |
Volume | 163 |
Early online date | 13 Jan 2024 |
DOIs | |
Publication status | Published - Jan 2024 |
Keywords
- Implant biomechanics
- Press-fit fixation
- Primary fixation
- Micromotion
- Friction