TY - JOUR
T1 - The effect of 'device-in-charge' support during robotic gait training on walking ability and balance in chronic stroke survivors: A systematic review
AU - Haarman, Juliet Albertina Maria
AU - Reenalda, Jasper
AU - Buurke, Jaap
AU - van der Kooij, Herman
AU - Rietman, Johan Swanik
PY - 2016
Y1 - 2016
N2 - This review describes the effects of two control strategies – used in robotic gait-training devices for chronic stroke survivors – on gait speed, endurance and balance. Control strategies are classified as ‘patient-in-charge support’, where the device ‘empowers’ the patient, and ‘device-in-charge support’, where the device imposes a pre-defined movement trajectory on the patient. Studies were collected up to 24 June 2015 and were included if they presented robotic gait training in chronic stroke survivors and used outcome measures that were indexed by the International Classification of Functioning, Disability and Health. In total, 11 articles were included. Methodological quality was assessed using the PEDro scale. Outcome measures were walking speed, endurance and balance. Pooled mean differences between pre and post measurements were calculated. No differences were found between studies that used device-in-charge support and patient-in-charge support. Training effects were small for both groups of control strategies, and none were considered to be clinically relevant as defined by the Minimal Clinically Important Difference. However, an important confounder is the short training duration among all included studies. As control strategies in robotic gait training are rapidly evolving, future research should take the recommendations that are made in this review into account.
AB - This review describes the effects of two control strategies – used in robotic gait-training devices for chronic stroke survivors – on gait speed, endurance and balance. Control strategies are classified as ‘patient-in-charge support’, where the device ‘empowers’ the patient, and ‘device-in-charge support’, where the device imposes a pre-defined movement trajectory on the patient. Studies were collected up to 24 June 2015 and were included if they presented robotic gait training in chronic stroke survivors and used outcome measures that were indexed by the International Classification of Functioning, Disability and Health. In total, 11 articles were included. Methodological quality was assessed using the PEDro scale. Outcome measures were walking speed, endurance and balance. Pooled mean differences between pre and post measurements were calculated. No differences were found between studies that used device-in-charge support and patient-in-charge support. Training effects were small for both groups of control strategies, and none were considered to be clinically relevant as defined by the Minimal Clinically Important Difference. However, an important confounder is the short training duration among all included studies. As control strategies in robotic gait training are rapidly evolving, future research should take the recommendations that are made in this review into account.
KW - METIS-319167
U2 - 10.1177/2055668316676785
DO - 10.1177/2055668316676785
M3 - Article
SN - 2055-6683
VL - 3
SP - -
JO - Journal of rehabilitation and assistive technologies
JF - Journal of rehabilitation and assistive technologies
ER -