The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: An explorative study

Research output: Contribution to journalArticleAcademicpeer-review

57 Citations (Scopus)
35 Downloads (Pure)

Abstract

Background There is increasing interest in the use of robotic gait-training devices in walking rehabilitation of incomplete spinal cord injured (iSCI) individuals. These devices provide promising opportunities to increase the intensity of training and reduce physical demands on therapists. Despite these potential benefits, robotic gait-training devices have not yet demonstrated clear advantages over conventional gait-training approaches, in terms of functional outcomes. This might be due to the reduced active participation and step-to-step variability in most robotic gait-training strategies, when compared to manually assisted therapy. Impedance-controlled devices can increase active participation and step-to-step variability. The aim of this study was to assess the effect of impedance-controlled robotic gait training on walking ability and quality in chronic iSCI individuals. Methods A group of 10 individuals with chronic iSCI participated in an explorative clinical trial. Participants trained three times a week for eight weeks using an impedance-controlled robotic gait trainer (LOPES: LOwer extremity Powered ExoSkeleton). Primary outcomes were the 10-meter walking test (10MWT), the Walking Index for Spinal Cord Injury (WISCI II), the six-meter walking test (6MWT), the Timed Up and Go test (TUG) and the Lower Extremity Motor Scores (LEMS). Secondary outcomes were spatiotemporal and kinematics measures. All participants were tested before, during, and after training and at 8 weeks follow-up. Results Participants experienced significant improvements in walking speed (0.06 m/s, p = 0.008), distance (29 m, p = 0.005), TUG (3.4 s, p = 0.012), LEMS (3.4, p = 0.017) and WISCI after eight weeks of training with LOPES. At the eight-week follow-up, participants retained the improvements measured at the end of the training period. Significant improvements were also found in spatiotemporal measures and hip range of motion. Conclusion Robotic gait training using an impedance-controlled robot is feasible in gait rehabilitation of chronic iSCI individuals. It leads to improvements in walking ability, muscle strength, and quality of walking. Improvements observed at the end of the training period persisted at the eight-week follow-up. Slower walkers benefit the most from the training protocol and achieve the greatest relative improvement in speed and walking distance
Original languageEnglish
Article number26
Pages (from-to)26-
JournalJournal of neuroengineering and rehabilitation
Volume11
Issue number1
DOIs
Publication statusPublished - 2014

Fingerprint

Robotics
Electric Impedance
Spinal Cord Injuries
Gait
Walking
Spinal Cord
Lower Extremity
Equipment and Supplies
Rehabilitation
Walkers
Muscle Strength
Articular Range of Motion
Biomechanical Phenomena
Hip
Clinical Trials

Keywords

  • IR-98211
  • METIS-307713

Cite this

@article{c869637c6960400d9bac0b29596c3bfe,
title = "The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: An explorative study",
abstract = "Background There is increasing interest in the use of robotic gait-training devices in walking rehabilitation of incomplete spinal cord injured (iSCI) individuals. These devices provide promising opportunities to increase the intensity of training and reduce physical demands on therapists. Despite these potential benefits, robotic gait-training devices have not yet demonstrated clear advantages over conventional gait-training approaches, in terms of functional outcomes. This might be due to the reduced active participation and step-to-step variability in most robotic gait-training strategies, when compared to manually assisted therapy. Impedance-controlled devices can increase active participation and step-to-step variability. The aim of this study was to assess the effect of impedance-controlled robotic gait training on walking ability and quality in chronic iSCI individuals. Methods A group of 10 individuals with chronic iSCI participated in an explorative clinical trial. Participants trained three times a week for eight weeks using an impedance-controlled robotic gait trainer (LOPES: LOwer extremity Powered ExoSkeleton). Primary outcomes were the 10-meter walking test (10MWT), the Walking Index for Spinal Cord Injury (WISCI II), the six-meter walking test (6MWT), the Timed Up and Go test (TUG) and the Lower Extremity Motor Scores (LEMS). Secondary outcomes were spatiotemporal and kinematics measures. All participants were tested before, during, and after training and at 8 weeks follow-up. Results Participants experienced significant improvements in walking speed (0.06 m/s, p = 0.008), distance (29 m, p = 0.005), TUG (3.4 s, p = 0.012), LEMS (3.4, p = 0.017) and WISCI after eight weeks of training with LOPES. At the eight-week follow-up, participants retained the improvements measured at the end of the training period. Significant improvements were also found in spatiotemporal measures and hip range of motion. Conclusion Robotic gait training using an impedance-controlled robot is feasible in gait rehabilitation of chronic iSCI individuals. It leads to improvements in walking ability, muscle strength, and quality of walking. Improvements observed at the end of the training period persisted at the eight-week follow-up. Slower walkers benefit the most from the training protocol and achieve the greatest relative improvement in speed and walking distance",
keywords = "IR-98211, METIS-307713",
author = "B.M. Fleerkotte and Bram Koopman and Jaap Buurke and {van Asseldonk}, {Edwin H.F.} and {van der Kooij}, Herman and Rietman, {Johan Swanik}",
note = "Open access",
year = "2014",
doi = "10.1186/1743-0003-11-26",
language = "English",
volume = "11",
pages = "26--",
journal = "Journal of neuroengineering and rehabilitation",
issn = "1743-0003",
publisher = "BioMed Central Ltd.",
number = "1",

}

TY - JOUR

T1 - The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: An explorative study

AU - Fleerkotte, B.M.

AU - Koopman, Bram

AU - Buurke, Jaap

AU - van Asseldonk, Edwin H.F.

AU - van der Kooij, Herman

AU - Rietman, Johan Swanik

N1 - Open access

PY - 2014

Y1 - 2014

N2 - Background There is increasing interest in the use of robotic gait-training devices in walking rehabilitation of incomplete spinal cord injured (iSCI) individuals. These devices provide promising opportunities to increase the intensity of training and reduce physical demands on therapists. Despite these potential benefits, robotic gait-training devices have not yet demonstrated clear advantages over conventional gait-training approaches, in terms of functional outcomes. This might be due to the reduced active participation and step-to-step variability in most robotic gait-training strategies, when compared to manually assisted therapy. Impedance-controlled devices can increase active participation and step-to-step variability. The aim of this study was to assess the effect of impedance-controlled robotic gait training on walking ability and quality in chronic iSCI individuals. Methods A group of 10 individuals with chronic iSCI participated in an explorative clinical trial. Participants trained three times a week for eight weeks using an impedance-controlled robotic gait trainer (LOPES: LOwer extremity Powered ExoSkeleton). Primary outcomes were the 10-meter walking test (10MWT), the Walking Index for Spinal Cord Injury (WISCI II), the six-meter walking test (6MWT), the Timed Up and Go test (TUG) and the Lower Extremity Motor Scores (LEMS). Secondary outcomes were spatiotemporal and kinematics measures. All participants were tested before, during, and after training and at 8 weeks follow-up. Results Participants experienced significant improvements in walking speed (0.06 m/s, p = 0.008), distance (29 m, p = 0.005), TUG (3.4 s, p = 0.012), LEMS (3.4, p = 0.017) and WISCI after eight weeks of training with LOPES. At the eight-week follow-up, participants retained the improvements measured at the end of the training period. Significant improvements were also found in spatiotemporal measures and hip range of motion. Conclusion Robotic gait training using an impedance-controlled robot is feasible in gait rehabilitation of chronic iSCI individuals. It leads to improvements in walking ability, muscle strength, and quality of walking. Improvements observed at the end of the training period persisted at the eight-week follow-up. Slower walkers benefit the most from the training protocol and achieve the greatest relative improvement in speed and walking distance

AB - Background There is increasing interest in the use of robotic gait-training devices in walking rehabilitation of incomplete spinal cord injured (iSCI) individuals. These devices provide promising opportunities to increase the intensity of training and reduce physical demands on therapists. Despite these potential benefits, robotic gait-training devices have not yet demonstrated clear advantages over conventional gait-training approaches, in terms of functional outcomes. This might be due to the reduced active participation and step-to-step variability in most robotic gait-training strategies, when compared to manually assisted therapy. Impedance-controlled devices can increase active participation and step-to-step variability. The aim of this study was to assess the effect of impedance-controlled robotic gait training on walking ability and quality in chronic iSCI individuals. Methods A group of 10 individuals with chronic iSCI participated in an explorative clinical trial. Participants trained three times a week for eight weeks using an impedance-controlled robotic gait trainer (LOPES: LOwer extremity Powered ExoSkeleton). Primary outcomes were the 10-meter walking test (10MWT), the Walking Index for Spinal Cord Injury (WISCI II), the six-meter walking test (6MWT), the Timed Up and Go test (TUG) and the Lower Extremity Motor Scores (LEMS). Secondary outcomes were spatiotemporal and kinematics measures. All participants were tested before, during, and after training and at 8 weeks follow-up. Results Participants experienced significant improvements in walking speed (0.06 m/s, p = 0.008), distance (29 m, p = 0.005), TUG (3.4 s, p = 0.012), LEMS (3.4, p = 0.017) and WISCI after eight weeks of training with LOPES. At the eight-week follow-up, participants retained the improvements measured at the end of the training period. Significant improvements were also found in spatiotemporal measures and hip range of motion. Conclusion Robotic gait training using an impedance-controlled robot is feasible in gait rehabilitation of chronic iSCI individuals. It leads to improvements in walking ability, muscle strength, and quality of walking. Improvements observed at the end of the training period persisted at the eight-week follow-up. Slower walkers benefit the most from the training protocol and achieve the greatest relative improvement in speed and walking distance

KW - IR-98211

KW - METIS-307713

U2 - 10.1186/1743-0003-11-26

DO - 10.1186/1743-0003-11-26

M3 - Article

VL - 11

SP - 26-

JO - Journal of neuroengineering and rehabilitation

JF - Journal of neuroengineering and rehabilitation

SN - 1743-0003

IS - 1

M1 - 26

ER -