The effect of intrinsic magnetic order on electrochemical water splitting

Emma van der Minne*, Lucas Korol, Lidewij M.A. Krakers, Michael Verhage, Carlos M.M. Rosário, Thijs J. Roskamp, Raymond J. Spiteri, Chiara Biz, Mauro Fianchini, Bernard A. Boukamp, Guus Rijnders, Kees Flipse, Jose Gracia, Guido Mul, Hans Hilgenkamp, Robert J. Green, Gertjan Koster, Christoph Baeumer*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

5 Citations (Scopus)
78 Downloads (Pure)

Abstract

To reach a long term viable green hydrogen economy, rational design of active oxygen evolution reaction (OER) catalysts is critical. An important hurdle in this reaction originates from the fact that the reactants are singlet molecules, whereas the oxygen molecule has a triplet ground state with parallel spin alignment, implying that magnetic order in the catalyst is essential. Accordingly, multiple experimentalists reported a positive effect of external magnetic fields on OER activity of ferromagnetic catalysts. However, it remains a challenge to investigate the influence of the intrinsic magnetic order on catalytic activity. Here, we tuned the intrinsic magnetic order of epitaxial La0.67Sr0.33MnO3 thin film model catalysts from ferro- to paramagnetic by changing the temperature in situ during water electrolysis. Using this strategy, we show that ferromagnetic ordering below the Curie temperature enhances OER activity. Moreover, we show a slight current density enhancement upon application of an external magnetic field and find that the dependence of magnetic field direction correlates with the magnetic anisotropy in the catalyst film. Our work, thus, suggests that both the intrinsic magnetic order in La0.67Sr0.33MnO3 films and magnetic domain alignment increase their catalytic activity. We observe no long-range magnetic order at the catalytic surface, implying that the OER enhancement is connected to the magnetic order of the bulk catalyst. Combining the effects found with existing literature, we propose a unifying picture for the spin-polarized enhancement in magnetic oxide catalysts.

Original languageEnglish
Article number011420
JournalApplied physics reviews
Volume11
Issue number1
DOIs
Publication statusPublished - 19 Mar 2024

Keywords

  • UT-Hybrid-D

Fingerprint

Dive into the research topics of 'The effect of intrinsic magnetic order on electrochemical water splitting'. Together they form a unique fingerprint.

Cite this