The Impact of a realistic complete Stenting Procedure on the Migration Behaviour: a Numerical Analysis

Sam Altnji*, J. Fayade, B. Bou-Said

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

2 Downloads (Pure)

Abstract

The migration of the stent graft is one of the main complications of Endovascular aneurysm repair (EVAR). It is closely related to ineffective contact between the endograft ends and the wall of the blood vessel. In this study, we have developed a realistic stent-graft deployment simulation using the Finite Element Method of 3D nitinol stent in a patient-specific Thoracic Aortic Aneurysm (TAA). This work aims to investigate the impact of the realistic complete stenting procedure by a progressive expanding deployment of the stent graft on the migration behaviour. A comparison of results is investigated between the realistic and non-realistic deployment methods to predict the overall (stent–aorta) biomechanical behaviour. We have also investigated the effect of including the graft material on the mechanical behaviour of the (stent-graft) during the deployment and the contact stability (stentgraft)/aorta after the deployment. The simulation results show that the realistic deployment method did indeed influence the mechanical behaviour, positioning, and eventually the functioning of the stent-graft when compared with the traditional deployment methods. The impact of adding the fabric tissue to the stent being deployed in an idealized straight centerline on the contact stiffness seems to be modest compared the deployed stent without graft.
Original languageEnglish
Number of pages5
JournalJournal of Vascular Medicine & Surgery
Volume8
Issue number4
DOIs
Publication statusPublished - Aug 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'The Impact of a realistic complete Stenting Procedure on the Migration Behaviour: a Numerical Analysis'. Together they form a unique fingerprint.

Cite this