Abstract
Both fetal electrocardiography and fetal magnetocardiography are influenced by the volume conduction within the abdomen of the pregnant woman. In this paper, various models are used to simulate this influence. Such models are helpful to determine where to attach electrodes at the maternal abdomen in case fetal ECGs are measured and where to position the magnetocardiograph in case fetal MCGs are measured. Another goal is to assess the influence of individual differences, such as the amount of amniotic fluid. Seven models based on MR-images have been created, four for the third trimester of gestation, with the fetus in left occiput position, and three for the second trimester. The models consist of four compartments; the fetus, the vernix caseosa, the amniotic fluid, and the remainder of the maternal abdomen. It turns out that individual differences have a large impact on the fetal MCG and that the best measurement positions are expected over the centre of the abdomen near the fetal heart. The fetal ECG is dependent on the vernix caseosa and when this layer is present, the fetal ECG is best measured by two electrodes, one over the fetal mouth and the other over the bottom of the fetus.
Original language | English |
---|---|
Pages (from-to) | 165-176 |
Number of pages | 12 |
Journal | Archives of physiology and biochemistry |
Volume | 110 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2002 |
Keywords
- n/a OA procedure