TY - CONF
T1 - The matching conditions of controlled Lagrangians and IDA-passivity based control
AU - Stamatialis, Dimitrios
AU - Blankenstein, G.
AU - Ortega, Romeo
AU - Koops, G.H.
AU - van der Schaft, Arjan
PY - 2002
Y1 - 2002
N2 - This paper discusses the matching conditions resulting from the controlled Lagrangians method and the interconnection and damping assignment passivity based control (IDA-PBC) method. Both methods have been presented recently in the literature as means to stabilize a desired equilibrium point of an Euler±Lagrange, respectively Hamiltonian, system. In the context of mechanical systems with symmetry, the original controlled Lagrangians method is reviewed, and an interpretation of the matching assumptions in terms of the matching of kinetic and potential energy is given. Secondly, both methods are applied to the general class of underactuated mechanical systems and it is shown that the controlled Lagrangians method is contained in the IDA-PBC method. The $\lambda$-method as described in recent papers for the controlled Lagrangians method, transforming the matching conditions (a set of non-linear PDEs) into a set of linear PDEs, is discussed. The method is used to transform the matching conditions obtained in the IDA-PBC method into a set of quadratic and linear PDEs. Finally, the extra freedom obtained in the IDA-PBC method (with respect to the controlled Lagrangians method) is used to discuss the integrability of the closed-loop system. Explicit conditions are derived under which the closed-loop Hamiltonian system is integrable, leading to the introduction of gyroscopic terms.
AB - This paper discusses the matching conditions resulting from the controlled Lagrangians method and the interconnection and damping assignment passivity based control (IDA-PBC) method. Both methods have been presented recently in the literature as means to stabilize a desired equilibrium point of an Euler±Lagrange, respectively Hamiltonian, system. In the context of mechanical systems with symmetry, the original controlled Lagrangians method is reviewed, and an interpretation of the matching assumptions in terms of the matching of kinetic and potential energy is given. Secondly, both methods are applied to the general class of underactuated mechanical systems and it is shown that the controlled Lagrangians method is contained in the IDA-PBC method. The $\lambda$-method as described in recent papers for the controlled Lagrangians method, transforming the matching conditions (a set of non-linear PDEs) into a set of linear PDEs, is discussed. The method is used to transform the matching conditions obtained in the IDA-PBC method into a set of quadratic and linear PDEs. Finally, the extra freedom obtained in the IDA-PBC method (with respect to the controlled Lagrangians method) is used to discuss the integrability of the closed-loop system. Explicit conditions are derived under which the closed-loop Hamiltonian system is integrable, leading to the introduction of gyroscopic terms.
KW - EWI-16712
KW - IR-69111
KW - METIS-211075
U2 - 10.1080/00207170210135939
DO - 10.1080/00207170210135939
M3 - Paper
SP - 645
EP - 665
ER -