TY - JOUR
T1 - The production of PEO polymer brushes via Langmuir-Blodgett and Langmuir-Schaeffer methods
T2 - Incomplete transfer and its consequences
AU - De Vos, Wiebe M.
AU - De Keizer, Arie
AU - Mieke Kleijn, J.
AU - Cohen Stuart, Martien A.
PY - 2009/4/21
Y1 - 2009/4/21
N2 - Using fixed-angle ellipsometry, we investigate the degree of mass transfer upon vertically dipping a polystyrene surface through a layer of a polystyrene-poly(ethylene oxide) (PS-PEO) block copolymer at the air water interface (Langmuir-Blodgett or LB transfer). The transferred mass is proportional to the PS-PEO grafting density at the air-water interface, but the transferred mass is not equal to the mass at the air-water interface. We find that depending on the chain length of the PEO block only a certain fraction of the polymers at the air-water interface is transferred to the solid surface. For the shortest PEO chain length (PS36-PEO148), the mass transfer amounts to 94%, while for longer chain lengths (PS36- PEO37O and PS38-PEO770), a transfer of, respectively 57% and 19%, is obtained. We attribute this reduced mass transfer to a competition for the PS surface between the PEO block and the PS block. Atomic force microscopy shows that after transfer the material is evenly spread over the surface. However, upon a short heating of these transferred layers (95 °C, 5 min) a dewetting of the PS-PEO layer takes place. These results have a significant impact on the interpretation of the results in a number of papers in which the above-described transfer method was used to prod uce PEO polymer brushes, in a few cases in combination with heating. We briefly review these papers and discuss their main results in light of this new information. Furthermore, we show that, by using Langmuir-Schaeffer (LS, horizontal) dipping, much higher mass transfers can be reached than with the LB method. When the LB or LS methods are carefully applied, it is a very powerful technique to produce PEO brushes, as it gives full control over both the grafting density and the chain length.
AB - Using fixed-angle ellipsometry, we investigate the degree of mass transfer upon vertically dipping a polystyrene surface through a layer of a polystyrene-poly(ethylene oxide) (PS-PEO) block copolymer at the air water interface (Langmuir-Blodgett or LB transfer). The transferred mass is proportional to the PS-PEO grafting density at the air-water interface, but the transferred mass is not equal to the mass at the air-water interface. We find that depending on the chain length of the PEO block only a certain fraction of the polymers at the air-water interface is transferred to the solid surface. For the shortest PEO chain length (PS36-PEO148), the mass transfer amounts to 94%, while for longer chain lengths (PS36- PEO37O and PS38-PEO770), a transfer of, respectively 57% and 19%, is obtained. We attribute this reduced mass transfer to a competition for the PS surface between the PEO block and the PS block. Atomic force microscopy shows that after transfer the material is evenly spread over the surface. However, upon a short heating of these transferred layers (95 °C, 5 min) a dewetting of the PS-PEO layer takes place. These results have a significant impact on the interpretation of the results in a number of papers in which the above-described transfer method was used to prod uce PEO polymer brushes, in a few cases in combination with heating. We briefly review these papers and discuss their main results in light of this new information. Furthermore, we show that, by using Langmuir-Schaeffer (LS, horizontal) dipping, much higher mass transfers can be reached than with the LB method. When the LB or LS methods are carefully applied, it is a very powerful technique to produce PEO brushes, as it gives full control over both the grafting density and the chain length.
UR - http://www.scopus.com/inward/record.url?scp=65249126745&partnerID=8YFLogxK
U2 - 10.1021/la803576k
DO - 10.1021/la803576k
M3 - Article
AN - SCOPUS:65249126745
VL - 25
SP - 4490
EP - 4497
JO - Langmuir
JF - Langmuir
SN - 0743-7463
IS - 8
ER -