Abstract
The increasing development and production of unmanned aerial vehicles (UAVs or ‘drones’) with a higher level of autonomy can reduce human error and assist in safer, faster and more accurate inspections. Thanks to their ability to perform repeated inspections, even in challenging and dynamic environments, they make it easier to monitor infrastructural changes over time. This will benefit several potential applications, such as civil engineering inspections.
To ensure sufficient inspection outputs, a conventional UAV mission needs to be controlled by a highly skilled pilot or operator. This professional should be aware of what kind of information the inspectors need and adapt to any on-site difficulties such as obstacles, time of day and weather conditions. After the UAV flight mission is finished, a large number of acquired images are processed. Whether the images are used in visual inspection or 3D model generation, both cases require significant computing power and experience. The recent development towards autonomous inspections using conventional UAVs equipped with either image-based or Lidar-based tools can certainly reduce human error and assist in a safer, faster, more accurate inspection generating data that is accessible online. Furthermore, UAVs can perform repeated inspections even in challenging and dynamic environments, making it easier to monitor infrastructural changes over time.
To ensure sufficient inspection outputs, a conventional UAV mission needs to be controlled by a highly skilled pilot or operator. This professional should be aware of what kind of information the inspectors need and adapt to any on-site difficulties such as obstacles, time of day and weather conditions. After the UAV flight mission is finished, a large number of acquired images are processed. Whether the images are used in visual inspection or 3D model generation, both cases require significant computing power and experience. The recent development towards autonomous inspections using conventional UAVs equipped with either image-based or Lidar-based tools can certainly reduce human error and assist in a safer, faster, more accurate inspection generating data that is accessible online. Furthermore, UAVs can perform repeated inspections even in challenging and dynamic environments, making it easier to monitor infrastructural changes over time.
Original language | English |
---|---|
Number of pages | 4 |
Journal | GIM International |
Publication status | Published - 24 Jun 2021 |
Keywords
- UAV
- Civil infrastructure
- Inspection
- Autonomous