Abstract
In situations without central coordination, the price of anarchy relates the quality of any Nash equilibrium to the quality of a global optimum. Instead of assuming that all players choose their actions simultaneously, we consider games where players choose their actions sequentially. The sequential price of anarchy, recently introduced by Paes Leme, Syrgkanis, and Tardos, relates the quality of any subgame perfect equilibrium to the quality of a global optimum. The effect of sequential decision making on the quality of equilibria, depends on the specific game under consideration. We analyze the sequential price of anarchy for atomic congestion games with affine cost functions. We derive several lower and upper bounds, showing that sequential decisions mitigate the worst case outcomes known for the classical price of anarchy. Next to tight bounds on the sequential price of anarchy, a methodological contribution of our work is, among other things, a “factor revealing‿ linear programming approach we use to solve the case of three players.
Original language | Undefined |
---|---|
Title of host publication | Proceedings of the 10th Conference on Web and Internet Economics, WINE 2014 |
Editors | Tie-Yan Liu, Qi Qi, Yinyu Ye |
Place of Publication | Berlin |
Publisher | Springer |
Pages | 429-434 |
Number of pages | 6 |
ISBN (Print) | 978-3-319-13128-3 |
DOIs | |
Publication status | Published - 14 Dec 2014 |
Event | 10th Conference on Web and Internet Economics, WINE 2014 - Beijing, China Duration: 14 Dec 2014 → 17 Dec 2014 Conference number: 10 |
Publication series
Name | Lecture Notes In Computer Science |
---|---|
Publisher | Springer International Publishing Switzerland |
Volume | 8877 |
Conference
Conference | 10th Conference on Web and Internet Economics, WINE 2014 |
---|---|
Abbreviated title | WINE |
Country/Territory | China |
City | Beijing |
Period | 14/12/14 → 17/12/14 |
Keywords
- EWI-25269
- Linear Programming
- Equilibrium
- Sequential Price of Anarchy
- IR-93644
- Congestion Game
- Game Theory
- METIS-309644